例4 已知等式 解:由已知條件得 查看更多

 

題目列表(包括答案和解析)

已知:如圖,拋物線y=ax2-5ax+b+
5
2
與直線y=
1
2
x+b交于點(diǎn)A(-3,0)、點(diǎn)B,與y軸精英家教網(wǎng)交于點(diǎn)C.
(1)求拋物線與直線的解析式;
(2)在直線AB上方的拋物線上有一點(diǎn)D,使得△DAB的面積是8,求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是直線x=1上一點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

已知平面直角坐標(biāo)系xOy中,點(diǎn)A在拋物線y=
2
3
3
x2+
3
3
上,過A作AB⊥x軸于點(diǎn)B,AD⊥y軸于點(diǎn)D,將矩形ABOD沿對角線BD折疊后得A的對應(yīng)點(diǎn)為A′,重疊部分(陰影)為△BDC.
(1)求證:△BDC是等腰三角形;
(2)如果A點(diǎn)的坐標(biāo)是(1,m),求△BDC的面積;
(3)在(2)的條件下,求直線BC的解析式,并判斷點(diǎn)A′是否落在已知的拋物線上?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對稱軸與x軸交于點(diǎn)D(
 
,0)
∵拋物線的對稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),若拋物線的對稱軸為x=1,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),過點(diǎn)B、D的直線與拋物線的對稱軸交于點(diǎn)E.問:是否存在這樣的點(diǎn)F,使得以點(diǎn)B、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(3)在(2)的條件下,若在BD上存在一點(diǎn)P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請你求出此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

精英家教網(wǎng)已知:如圖,在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c.點(diǎn)E是AC邊上的一個動點(diǎn)(點(diǎn)E與點(diǎn)A、C不重合),點(diǎn)F是AB邊上的一個動點(diǎn)(點(diǎn)F與點(diǎn)A、B不重合),連接EF.
(1)當(dāng)a、b滿足a2+b2-16a-12b+100=0,且c是不等式組
x+2
4
≤x+6
2x+2
3
>x-3
的最大整數(shù)解時,試說明△ABC的形狀;
(2)在(1)的條件得到滿足的△ABC中,若EF平分△ABC的周長,設(shè)AE=x,y表示△AEF的面積,試寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)在(1)的條件得到滿足的△ABC中,是否存在線段EF,將△ABC的周長和面積同時平分?若存在,則求出AE的長;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案