⑴當(dāng)時(shí).求雙曲線E的方程, 查看更多

 

題目列表(包括答案和解析)

已知雙曲線
x22
-y2=1
的兩焦點(diǎn)為F1,F(xiàn)2,P為動(dòng)點(diǎn),若PF1+PF2=4.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E方程;
(Ⅱ)若A1(-2,0),A2(2,0),M(1,0),設(shè)直線l過(guò)點(diǎn)M,且與軌跡E交于R、Q兩點(diǎn),直線A1R與A2Q交于點(diǎn)S.試問(wèn):當(dāng)直線l在變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫(xiě)出這條定直線方程,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知雙曲線的兩焦點(diǎn)為,P為動(dòng)點(diǎn),若
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E方程;
(Ⅱ)若,設(shè)直線l過(guò)點(diǎn)M,且與軌跡E交于R、Q兩點(diǎn),直線交于點(diǎn)S,試問(wèn):當(dāng)直線l在變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫(xiě)出這條定直線方程,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知雙曲線的兩焦點(diǎn)為F1,F(xiàn)2,P為動(dòng)點(diǎn),若PF1+PF2=4.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E方程;
(Ⅱ)若A1(-2,0),A2(2,0),M(1,0),設(shè)直線l過(guò)點(diǎn)M,且與軌跡E交于R、Q兩點(diǎn),直線A1R與A2Q交于點(diǎn)S.試問(wèn):當(dāng)直線l在變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫(xiě)出這條定直線方程,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)已知橢圓E的方程為
x2
a2
+
y2
b2
=1(a>b>0)雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1和l2,過(guò)橢圓E的右焦點(diǎn)F作直線l,使得l⊥l2于點(diǎn)C,又l與l1交于點(diǎn)P,l與橢圓E的兩個(gè)交點(diǎn)從上到下依次為A,B(如圖).
(1)當(dāng)直線l1的傾斜角為30°,雙曲線的焦距為8時(shí),求橢圓的方程;
(2)設(shè)
PA
=λ1
AF
,
PB
=λ2
BF
,證明:λ12為常數(shù).

查看答案和解析>>

已知橢圓E的方程為
x2
a2
+
y2
b2
=1(a>b>0)雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1和l2,過(guò)橢圓E的右焦點(diǎn)F作直線l,使得l⊥l2于點(diǎn)C,又l與l1交于點(diǎn)P,l與橢圓E的兩個(gè)交點(diǎn)從上到下依次為A,B(如圖).
(1)當(dāng)直線l1的傾斜角為30°,雙曲線的焦距為8時(shí),求橢圓的方程;
(2)設(shè)
PA
=λ1
AF
,
PB
=λ2
BF
,證明:λ12為常數(shù).
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊(cè)答案