在等差數(shù)列中...若.則的最小值為(A)60 (B)62 (C)70 (D)72 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列中,,,記數(shù)列的前項和為,若恒成立,則正整數(shù)的最小值為(     )

A.5           B.4         C.3        D.2

 

查看答案和解析>>

在等差數(shù)列中,,,記數(shù)列的前項和為,

(Ⅰ)數(shù)列的通項             ;

(Ⅱ)若恒成立,則正整數(shù)的最小值為        

 

查看答案和解析>>

在等差數(shù)列中,中若,為前項之和,且,則為最小時的的值為         .

 

查看答案和解析>>

在等差數(shù)列中,若它的前n項和有最大值,則使取得最小正數(shù)          .

 

查看答案和解析>>

在等差數(shù)列中,,,記數(shù)列的前項和為,若恒成立,則正整數(shù)的最小值為(    )

A.5 B.4 C.3 D.2

查看答案和解析>>

一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

二.11、-3;.12、1;13、14、15、

三.16.解:

……(2’)

整理得:……………………………(4’)

又A為銳角,…………………(6’)

(2)由(1)知………………………(7’)

……………………………(12’)

當B=600時,Y取得最大值!(13’)

 17. 設答對題的個數(shù)為y,得分為,y=0,1,2,4 ,=0,2,4,8………(1’)

,      

  • <center id="k8p31"></center>

    0

    2

    4

    8

    P

     

    的分布列為

    …………………………………10分

      

     

     

     

    (2)E=…………………………12分

    答:該人得分的期望為2分……………………………………………………13分

    18. 解:(1)取AC中點D,連結SD、DB.

    ∵SA=SC,AB=BC,

    ∴AC⊥SD且AC⊥BD,

    ∴AC⊥平面SDB,又SB平面SDB,

    ∴AC⊥SB-----------4分

    (2)∵AC⊥平面SDB,AC平面ABC,

    ∴平面SDB⊥平面ABC.

    過N作NE⊥BD于E,NE⊥平面ABC,

    過E作EF⊥CM于F,連結NF,

    則NF⊥CM.

    ∴∠NFE為二面角N-CM-B的平面角---------------6分

    ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

    又∵NE⊥平面ABC,∴NE∥SD.

    ∵SN=NB,

    ∴NE=SD===, 且ED=EB.

    在正△ABC中,由平幾知識可求得EF=MB=,

    在Rt△NEF中,tan∠NFE==2,

    ∴二面角N―CM―B的大小是arctan2-----------------------8分

    (3)在Rt△NEF中,NF==,

    ∴S△CMN=CM?NF=

    S△CMB=BM?CM=2-------------11分

    設點B到平面CMN的距離為h,

    ∵VB-CMN=VN-CMB,NE⊥平面CMB,

    S△CMN?h=S△CMB?NE,∴h==.

    即點B到平面CMN的距離為--------13分

    19. (1)解:當0<t≤10時,
      是增函數(shù),且                3分
      當20<t≤40時,是減函數(shù),且                    6分
      所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘                7分

    (2)解:,所以,講課開始25分鐘時,學生的注意力比講課開始后5分鐘更集中 9分

    (3)當0<t≤10時,令得:                   10分
      當20<t≤40時,令得:                      12分
      則學生注意力在180以上所持續(xù)的時間
      所以,經(jīng)過適當安排,老師可以在學生達到所需要的狀態(tài)下講授完這道題         14分

     

    20.解:

    (1)設

    最大值為。故

    ………………………(6’)

    (2)由橢圓離心率得雙曲線

    ……………(7’)

    ①     當AB⊥x軸時,

    .…………(9’)

    ②當時.

    ………………………………………………(12’)

    同在內(nèi)……………(13’)

    =

    =有成立!(14’).

    21. (1)
      當a≥0時,在[2,+∞)上恒大于零,即,符合要求;      2分
        當a<0時,令,g (x)在[2,+∞)上只能恒小于零
      故△=1+4a≤0或,解得:a≤
      ∴a的取值范圍是                                     6分

    (2)a = 0時,
      當0<x<1時,當x>1時,∴              8分

    (3)反證法:假設x1 = b>1,由,
        ∴
      故
       ,即 、
      又由(2)當b>1時,,∴
      與①矛盾,故b≤1,即x1≤1
      同理可證x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分

     

     


    同步練習冊答案