5.若.為兩條不同的直線..為兩個(gè)不同的平面.則以下命題正確的是 查看更多

 

題目列表(包括答案和解析)

、為兩條不同的直線,為兩個(gè)不同的平面,則以下命題正確的是        

①若,,則;  ②若,,則;

③若,,則;  ④若,,則

查看答案和解析>>

、是兩條不同的直線,是三個(gè)不同的平面,則下列命題中為真命題的是學(xué)科網(wǎng)

     A.若     B.若  學(xué)科網(wǎng)

     C.若      D.若學(xué)科網(wǎng)

查看答案和解析>>

、是兩條不同的直線,是三個(gè)不同的平面,則下列命題中為真命題的是
A.若B.若
C.若D.若

查看答案和解析>>

設(shè)l,m,n為三條不同的直線,α、β為兩個(gè)不同的平面,下列命題中正確的個(gè)數(shù)是(   )

① 若l⊥α,m∥β,α⊥β則l⊥m ② 若則l⊥α

③ 若l∥m,m∥n,l⊥α,則n⊥α ④ 若l∥m,m⊥α,n⊥β,α∥β,則l∥n

A.1                B.2                C.3                D.4

 

查看答案和解析>>

設(shè)l,m,n為三條不同的直線,α、β為兩個(gè)不同的平面,下列命題中正確的個(gè)數(shù)是(    )

① 若l⊥α,m∥β,α⊥β則l⊥m ② 若則l⊥α

③ 若l∥m,m∥n,l⊥α,則n⊥α ④ 若l∥m,m⊥α,n⊥β,α∥β,則l∥n

A. 1            B. 2            C. 3            D. 4

 

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.; ;   14.,;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因?yàn)?sub>,所以,得…………3分

    又因?yàn)?sub>…………………………………3分

(2)由,得,…………………………………2分

    所以,…………………………………2分

    ,…………………………………2分

    ………………………………2分

19.如圖建立空間直角坐標(biāo)系,                  

 則,

……………………1分

    (1),………………1分

        ,……………………1分

        ……………………1分

      ∴……2分

     又相交,所以平面……1分

(2)設(shè)平面的一個(gè)法向量為,

因?yàn)?sub>,所以可取…………………………………………………2分

又平面的一個(gè)法向量為……………………………………………2分

  …………………………2分

∴二面角的大小為……………………………………………1分

20.解:(1)拋一次骰子面朝下的點(diǎn)數(shù)有l(wèi)、2、3、4四種情況,

而點(diǎn)數(shù)大于2的有2種,故闖第一關(guān)成功的概率……………………2分

(2)記事件“拋擲次骰子,各次面朝下的點(diǎn)數(shù)之和大于”為事件,

,

拋二次骰子面朝下的點(diǎn)數(shù)和

情況如右圖所示,

…………………………………………2分

拋三次骰子面朝下的點(diǎn)數(shù)依次記為:,,

考慮的情況

時(shí),有1種,時(shí),有3種

時(shí),有6種,時(shí),有10種

……………………………4分

由題意知可取0、1、2、3,

,………………………1分

,………………………1分

,………………………1分

,………………………1分

的分布列為:

 

 

 

   ……………………2分

21.(1)法一:由已知………………………………1分

    設(shè),則,……………………………1分

    ,………………………1分

    由得,

解得………………………2分

法二:記A點(diǎn)到準(zhǔn)線距離為,直線的傾斜角為

由拋物線的定義知,………………………2分

,

………………………3分

(2)設(shè),,

,………………………1分

首先由

,同理……………………2分

,…………………………2分

即:,

    ∴,…………………………2分

,得,

得,

的取值范圍為…………………………3分

22.(1)時(shí),,

,,………………………2分

所以切線方程為………………………2分

(2)1°當(dāng)時(shí),,則

,

再令

當(dāng)時(shí),∴上遞減,

∴當(dāng)時(shí),,

,所以上遞增,,

所以……………………5分

時(shí),,則

由1°知當(dāng)時(shí),上遞增

當(dāng)時(shí),,

所以上遞增,∴

;………………………5分

由1°及2°得:………………………1分

 

 

命題人

呂峰波(嘉興)、 王書朝(嘉善)、 王云林(平湖)

胡水林(海鹽)、 顧貫石(海寧)、  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強(qiáng)、吳林華

 


同步練習(xí)冊答案