(A) . 查看更多

 

題目列表(包括答案和解析)

a,b是實數(shù),則使|a|+|b|>1成立的充分不必要條件( 。
A、|a+b|≥1
B、|a|≥
1
2
且|b|≥
1
2
C、a≥1
D、b<-1

查看答案和解析>>

9、a,b,c分別表示三條直線,M表示平面,給出下列四個命題:
①若a∥M,b∥M,則a∥b;
②若b?M,a∥b,則a∥M;
③若a⊥c,b⊥c,則a∥b;
④若a⊥M,b⊥M,則a∥b.其中正確命題的個數(shù)有
1

查看答案和解析>>

A,B兩個投資項目的利潤率分別為隨機變量X1和X2.根據(jù)市場分析,X1和X2的分布列分別為
X1  5%  10%    X2 2%  8%  12% 
0.8   0.2   P  0.2  0.5  0.3
(Ⅰ)在A,B兩個項目上各投資100萬元,Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差DY1,DY2
(Ⅱ)將x(0≤x≤100)萬元投資A項目,100-x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.(注:D(aX+b)=a2DX)

查看答案和解析>>

15、“a,b為異面直線”是指:①a∩b=∅,且a不平行于b;②a?平面α,b?平面β,且a∩b=∅;③a?平面α,b?平面β,且a∩β=∅;④a?平面α,b?平面α;⑤不存在平面α能使a?α,b?α.成立.其中正確的序號是
①⑤

查看答案和解析>>

9、a,b,c是空間中互不重合的三條直線,下面給出五個命題:
①若a∥b,b∥c,則a∥c;
②若a⊥b,b⊥c,則a∥c;
③若a與b相交,b與c相交,則a與c相交;
④若a?平面α,b?平面β,則a,b一定是異面直線;
⑤若a,b與c成等角,則a∥B、
上述命題中正確的
(只填序號).

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.;   14.;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因為,所以,得…………3分

    又因為…………………………………3分

(2)由,得,…………………………………2分

    所以,…………………………………2分

    ,…………………………………2分

    ………………………………2分

19.如圖建立空間直角坐標(biāo)系,                  

 則,

……………………1分

    (1),………………1分

        ,……………………1分

        ……………………1分

      ∴……2分

     又相交,所以平面……1分

(2)設(shè)平面的一個法向量為

因為,所以可取…………………………………………………2分

又平面的一個法向量為……………………………………………2分

  …………………………2分

∴二面角的大小為……………………………………………1分

20.解:(1)拋一次骰子面朝下的點數(shù)有l(wèi)、2、3、4四種情況,

而點數(shù)大于2的有2種,故闖第一關(guān)成功的概率……………………2分

(2)記事件“拋擲次骰子,各次面朝下的點數(shù)之和大于”為事件

,

拋二次骰子面朝下的點數(shù)和

情況如右圖所示,

…………………………………………2分

拋三次骰子面朝下的點數(shù)依次記為:,

考慮的情況

時,有1種,時,有3種

時,有6種,時,有10種

……………………………4分

由題意知可取0、1、2、3,

,………………………1分

,………………………1分

,………………………1分

,………………………1分

的分布列為:

 

 

 

   ……………………2分

21.(1)法一:由已知………………………………1分

    設(shè),則,……………………………1分

    ,………………………1分

    由得,,

解得………………………2分

法二:記A點到準(zhǔn)線距離為,直線的傾斜角為,

由拋物線的定義知,………………………2分

,

………………………3分

(2)設(shè),

,………………………1分

首先由

,同理……………………2分

,…………………………2分

即:

    ∴,…………………………2分

,得,

得,

的取值范圍為…………………………3分

22.(1)時,,

,,………………………2分

所以切線方程為………………………2分

(2)1°當(dāng)時,,則

,

再令,

當(dāng),∴上遞減,

∴當(dāng)時,,

,所以上遞增,

所以……………………5分

時,,則

由1°知當(dāng),上遞增

當(dāng)時,

所以上遞增,∴

;………………………5分

由1°及2°得:………………………1分

 

 

命題人

呂峰波(嘉興)、 王書朝(嘉善)、 王云林(平湖)

胡水林(海鹽)、 顧貫石(海寧)、  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強、吳林華

 


同步練習(xí)冊答案