題目列表(包括答案和解析)
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到..
令,則,所以或,得到結(jié)論。
第二問中, ().
.
因為0<a<2,所以,.令 可得.
對參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則,所以或. ……………………3分
因為定義域為,所以.
令,則,所以.
因為定義域為,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因為0<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當(dāng),即時,
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當(dāng),即時,在區(qū)間上為減函數(shù).
所以.
綜上所述,當(dāng)時,;
當(dāng)時,
關(guān)于函數(shù)極值的說法正確的有________.
①函數(shù)的極大值一定大于它的極小值;
②導(dǎo)數(shù)為零的點不一定是函數(shù)的極值點;
③若f(x)在區(qū)間(a,b)內(nèi)有極值點,那么f(x)在區(qū)間(a,b)上一定不單調(diào);
④f(x)在區(qū)間[a,b]上的最大值,一定是f(x)在區(qū)間(a,b)上的極大值.
在平均變化率的定義中,自變量x在x0處的增量x( )
A.大于零 B.小于零 C.等于零 D.不等于零
(本小題滿分12分)
已知函數(shù)f(x)=4x3-3x2sin+的極小值大于零,其中x∈R, ∈[0,].
(1).求的取值范圍.
(2).若在的取值范圍內(nèi)的任意,函數(shù)f(x)在區(qū)間(2a-1,a)內(nèi)都是增函數(shù),求實數(shù)a的取值范圍.
(3).設(shè)x0>,f(x0) >,若f[f(x0)]=x0,求證f(x0)=x0
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com