(2)若即,也就是,而故,解得; 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為,

(1)若方程有兩個相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當(dāng)f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是

 

查看答案和解析>>

函數(shù)f(x)對任意的ab∈R,都有f(ab)=f(a)+f(b)-1,并且當(dāng)x>0時,f(x)>1.

(1)求證:f(x)是R上的增函數(shù);

(2)若f(4)=5,解不等式f(3m2m-2)<3.

查看答案和解析>>

(本題滿分12分)

設(shè)f(x)是定義在(0,+∞)上的增函數(shù),且f()=f(x)-f(y).[來源:學(xué)#科#網(wǎng)]

(1)求f(1)的值;

(2)若f(6)=1,解不等式f(x+5)-f()<2.

 

查看答案和解析>>

(本題滿分12分)

設(shè)f(x)是定義在(0,+∞)上的增函數(shù),且f()=f(x)-f(y).

(1)求f(1)的值;

(2)若f(6)=1,解不等式f(x+5)-f()<2.

查看答案和解析>>

一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當(dāng)日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.

(1)多少小時后,蓄水池存水量最少?

(2)當(dāng)蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時間有多長?

【解析】第一問中(1)設(shè)小時后,蓄水池有水千噸.依題意,當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸

第二問依題意,   解得:

解:(1)設(shè)小時后,蓄水池有水千噸.………………………………………1分

依題意,…………………………………………4分

當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸. ………2分

(2)依題意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,當(dāng)天有8小時會出現(xiàn)供水緊張的情況

 

查看答案和解析>>


同步練習(xí)冊答案