題目列表(包括答案和解析)
2 |
2 |
4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機變量的所有等可能取值為1,2…,n,若,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得
6.解析:因為只有一個零點,所以方程只有一個根,因此,所以
(1)已知R為實數(shù)集,集合A={x|x2-3x+2≤0}.若B∪∁RA=R,B∩∁RA={x|0<x<1或2<x<3},求集合B.
(2)已知集合M={a,0},N={x|x2-3x<0,x∈Z},而且M∩N={1},記P=M∪N,寫出集合P的所有子集.
已知,設(shè)和是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時,的最小值為3. 當(dāng)a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實數(shù)m的取值范圍是(4,8]
(本小題滿分12分)設(shè)函數(shù)f(x)的定義域是R,對于任意實數(shù)m,n,恒有f(m+n)=f(m)f(n),且當(dāng)x>0時,0<f(x)<1。
(1)求證:f(0)=1,且當(dāng)x<0時,有f(x)>1;
(2)判斷f(x)在R上的單調(diào)性;
⑶設(shè)集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com