題目列表(包括答案和解析)
如圖,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,將△ABC折疊,使點(diǎn)C與A重合,得折痕DE,則△ABE的周長(zhǎng)等于_________cm.
如圖,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個(gè)三角形按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到Rt△A′B′C′,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積為_(kāi)____________ cm2.
如圖,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個(gè)三角形按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到Rt△A′B′C′,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積為_(kāi)____________ cm2.
選擇題
1-5. CDCBA 6-8. BDC
填空題
9. -2 ; 10. ; 11. 7 ; 12. (不唯一) .
解答題
13. 解:原式= -------------------------------------------------------------4分
= -----------------------------------------------------------------------------5分
14. 解: 不等式 的解集是 -----------------------------------------1分
不等式 的解集是 -------------------------------------------------2分
所以,此不等式組的解集是 ---------------------------------------------4分
整數(shù)解為 ?2 ,?1 , 0 ,1 . --------------------------------------------5分
15. 解: 由題意,得 , ∴
∴ 反比例函數(shù)的解析式為 ----------------------------------------------------2分
∵ 點(diǎn)在反比例函數(shù)圖象上
∴ ---------------------------------------------------------------------------------3分
又∵ 一次函數(shù)的圖象過(guò)點(diǎn) 、
∴ -----------------------------------------------------------------------------4分
∴ 所以一次函數(shù)的解析式為 -----------------------------5分
16. 證明:在正方形ABCD中,∠DAF=∠ABE=90°, DA=AB. ------------------------1分
∵DG⊥AE,
∴∠FDA +∠DAG=90°. --------------------------------------------------------------2分
又∵∠EAB+∠DAG=90°,
∴∠FDA =∠EAB. -----------------------------------------------------------------------3分
∴△DAF≌△ABE, ----------------------------------------------------------------------4分
∴DF=AE. ------------------------------------------------------------------------------5分
17. 解:
∵
∴ ---------------------------------------------------------------------------------2分
∴ -----5分
18. 解:
(1)過(guò)點(diǎn)D作DE⊥OB于E,過(guò)點(diǎn)C作CF⊥OB于F.
∵四邊形OBCD是等腰梯形,OD=BC ,
∴ Rt△ODE≌Rt△BCF ,四邊形CDEF是矩形.
∴ OE=BF , DC=EF .----------------------------------------------------------------------------1分
∵ OD=BC=2, OB=5, ∠BOD=60°,
∴ OE=BF=1 , DC=EF=3.
∴ 梯形OBCD的周長(zhǎng)是12 --------------------------------------------------------------------2分
(2) 設(shè)點(diǎn)M的坐標(biāo)為 ,聯(lián)結(jié)DM和CM.
∵ ∠BOD=∠COD=∠OBC=60°
∴ ∠ODM+∠OMD=∠BMC+∠OMD=120°
∴ ∠ODM=∠BMC --------------------------------------------------------------------------------3分
∵ △OMD∽△BCM
∴
∴ --------------------------------------------------------------------------------------4分
∴
∴ 點(diǎn)M的坐標(biāo)為(1, 0) 或(4,0) ----------------------------------------------------------------5分
19. 解:(1) 聯(lián)結(jié)OC. ∵ PC為⊙O的切線 ,
∴ PC⊥OC .
∴ ∠PCO=90°. ----------------------------------------------------------------------1分
∵ ∠ACP=120°
∴ ∠ACO=30°
∵ OC=OA ,
∴ ∠A=∠ACO=30°.
∴ ∠BOC=60°--------------------------------------------------------------------------2分
∵ OC=4
∴
∴ -------------------------------------------3分
(2) ∠CMP的大小不變,∠CMP=45° --------------------------------------------------4分
由(1)知 ∠BOC+∠OPC=90°
∵ PM平分∠APC
∴ ∠APM=∠APC
∵ ∠A=∠BOC
∴ ∠PMC=∠A+∠APM=(∠BOC+∠OPC)= 45°---------------------------5分
20. 解:(1)21 -------------------------------------- 1分
(2)一班眾數(shù)為90,二班中位數(shù)為80?????????????????????????????????????????????????????????????????????????? 3分
(3)①?gòu)钠骄鶖?shù)的角度看兩班成績(jī)一樣,從中位數(shù)的角度看一班比二班的成績(jī)好,所以一班成績(jī)好; 4分
②從平均數(shù)的角度看兩班成績(jī)一樣,從眾數(shù)的角度看二班比一班的成績(jī)好,所以二班成績(jī)好; 5分
③從級(jí)以上(包括級(jí))的人數(shù)的角度看,一班人數(shù)是18人,二班人數(shù)是12人,所以一班成績(jī)好. 6分
21.解:(1)設(shè)購(gòu)進(jìn)甲種商品件,乙種商品件.
根據(jù)題意,得-------------------------------------------2分
化簡(jiǎn),得
解之,得
答:該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品分別為200件和120件. ------------------------------------3分
(2)甲商品購(gòu)進(jìn)400件,獲利為(元).
從而乙商品售完獲利應(yīng)不少于(元).
設(shè)乙商品每件售價(jià)為元,則.--------------------------------------------4分
解得.所以,乙種商品最低售價(jià)為每件108元.------------------------------------5分
22.(1)由題意,
要使,須,
.
,
即時(shí),能使得.------------------------------------------------------------2分
(2)的值的大小沒(méi)有變化, 總是105°.-------------------3分
當(dāng)時(shí),總有存在.
,
又,
.
又,
.------------------------------------------------------5分
23. 解:(1) ---------------------------------------------1分
---------------------------------------------------------------------------------2分
不論取何值,方程總有兩個(gè)不相等實(shí)數(shù)根 -------------------------------------------3分
(2)由原方程可得
∴ --------------------------------------------------------------4分
∴ ---------------------------------------------------------------------------------5分
又∵
∴
∴ ---------------------------------------------------------------------------------6分
經(jīng)檢驗(yàn):符合題意.
∴ 的值為4. ----------------------------------------------------------------------7分
24. 解:(1)∵拋物線經(jīng)過(guò)點(diǎn)A(2,0), C(0,2),
∴ 解得
∴拋物線解析式為 ---------------------2分
(2) ∵點(diǎn)B(1,n) 在拋物線上
∴ -----------------------------------3分
過(guò)點(diǎn)B作BD⊥y軸,垂足為D.
∴BD=1 , CD=
∴ BC=2 --------------------------------------------4分
(3) 聯(lián)結(jié)OB.
在Rt△BCD中, BD=1 ,BC=2 ,
∴∠BCD=30° ----------------------------------------5分
∵ OC=BC
∴∠BOC=∠OBC
∵∠BCD=∠BOC+∠OBC
∴∠BOC=15°
∴∠BOA=75°------------------------------------------6分
過(guò)點(diǎn)B作BE⊥OA , 垂足為E,則OE=AE.
∴OB=AB
∴∠OAB=∠BOA=75°.-------------------------------7分
25.(1)BM=DM ,BM⊥DM --------------------------------------------------------1分
證明:在Rt△EBC中,M是斜邊EC的中點(diǎn),
∴ .
∴ ∠EMB=2∠ECB.
在Rt△EDC中,M是斜邊EC的中點(diǎn),
∴ .
∴ ∠EMD=2∠ECD.-------------------2分
∴ BM=DM,∠EMD+∠EMB =2(∠ECD+ECB).
∵ ∠ECD+∠ECB=∠ACB=45°,
∴ ∠BMD=2∠ACB=90°,即BM⊥DM. -------------------------------3分
(2)當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)小于45°的角時(shí), (1)中的結(jié)論成立.
證明:
連結(jié)BD,延長(zhǎng)DM至點(diǎn)F,使得DM=MF,連結(jié)BF、FC,延長(zhǎng)ED交AC于點(diǎn)H.
-------------------------------------4分
∵ DM=MF,EM=MC,
∴ 四邊形是平行四邊形.
∴ DE∥CF ,ED =CF,
∵ ED= AD,
∴ AD=CF.
∵ DE∥CF,----------------------------------------5分
∴ ∠AHE=∠ACF.
∵ ,,
∴ ∠BAD=∠BCF. --------------------------------------------------6分
又∵AB= BC,
∴ △ABD≌△CBF.
∴ BD=BF,∠ABD=∠CBF.
∵ ∠ABD+∠DBC =∠CBF+∠DBC,
∴∠DBF=∠ABC =90°.
在Rt△中,由,,得BM=DM且BM⊥DM. -------7分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com