(Ⅰ)證明:因?yàn)?.所以為等腰直角三角形. 查看更多

 

題目列表(包括答案和解析)

如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)證明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">

是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,

所以是直線PD和平面PAC所成的角,從而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

在等腰三角形AOD中,

所以

故四棱錐的體積為.

【點(diǎn)評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

 

查看答案和解析>>

如圖,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對所有恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及,

第三問 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時,可求得,命題成立; ……………2分

②假設(shè)當(dāng)時,命題成立,即有,……………………1分

則當(dāng)時,由歸納假設(shè)及,

解得不合題意,舍去)

即當(dāng)時,命題成立.  …………………………………………4分

綜上所述,對所有.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習(xí)冊答案