21.本小題主要考查運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì).曲線的切線方程.函數(shù)的極值.解不等式等基礎(chǔ)知識(shí).考查綜合分析和解決問題的能力及分類討論的思想方法滿分14分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)其中a>0.

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;

(III)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。

【考點(diǎn)定位】本小題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),函數(shù)的最值等基礎(chǔ)知識(shí).考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.

 

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;

(Ⅱ)令g(x)= f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;

(Ⅲ)當(dāng)x∈(0,e]時(shí),證明:

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導(dǎo)函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問中,

假設(shè)存在實(shí)數(shù)a,使有最小值3,利用,對(duì)a分類討論,進(jìn)行求解得到a的值。

第三問中,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120293445381201_ST.files/image006.png">,這樣利用單調(diào)性證明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)見解析

 

查看答案和解析>>

已知函數(shù),曲線在點(diǎn)x=1處的切線為,若時(shí),有極值。

(1)求的值; (2)求上的最大值和最小值。

【解析】本試題主要考查了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及運(yùn)用導(dǎo)數(shù)在研究函數(shù)的極值和最值的問題。體現(xiàn)了導(dǎo)數(shù)的工具性的作用。

 

查看答案和解析>>

已知函數(shù),曲線在點(diǎn)x=1處的切線為,若時(shí),有極值。

(1)求的值; (2)求上的最大值和最小值。

【解析】本試題主要考查了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及運(yùn)用導(dǎo)數(shù)在研究函數(shù)的極值和最值的問題。體現(xiàn)了導(dǎo)數(shù)的工具性的作用。

 

查看答案和解析>>


同步練習(xí)冊答案