(1)若.當(dāng)變化時(shí).的正負(fù)如下表: 查看更多

 

題目列表(包括答案和解析)

極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線(xiàn)Cl的極坐標(biāo)方程為,曲線(xiàn)C2的參數(shù)方程為為參數(shù))。

(1)當(dāng)時(shí),求曲線(xiàn)Cl與C2公共點(diǎn)的直角坐標(biāo); 

(2)若,當(dāng)變化時(shí),設(shè)曲線(xiàn)C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線(xiàn).

 

查看答案和解析>>

已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線(xiàn)的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

【解析】第一問(wèn)當(dāng)時(shí),,則。

依題意得:,即    解得

第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問(wèn)假設(shè)曲線(xiàn)上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線(xiàn)上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無(wú)解,因此。此時(shí)

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

已知直線(xiàn),給出如下結(jié)論:

①不論為何值時(shí),都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過(guò)定點(diǎn)A(0,1)和B(-1,0);

③不論為何值時(shí), 都關(guān)于直線(xiàn)對(duì)稱(chēng);

④當(dāng)變化時(shí), 的交點(diǎn)軌跡是以AB為直徑的圓(除去原點(diǎn)).

其中正確的結(jié)論有( ).

A.①③            B.①②④                  C.①③④                D.①②③④

 

查看答案和解析>>

選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線(xiàn)Cl的極坐標(biāo)方程為ρ=2cosθ,曲線(xiàn)C2的參數(shù)方程為為參數(shù)).
(I)當(dāng)時(shí),求曲線(xiàn)Cl與C2公共點(diǎn)的直角坐標(biāo);
(II)若,當(dāng)α變化時(shí),設(shè)曲線(xiàn)C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線(xiàn).

查看答案和解析>>

選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線(xiàn)Cl的極坐標(biāo)方程為ρ=2cosθ,曲線(xiàn)C2的參數(shù)方程為為參數(shù)).
(I)當(dāng)時(shí),求曲線(xiàn)Cl與C2公共點(diǎn)的直角坐標(biāo);
(II)若,當(dāng)α變化時(shí),設(shè)曲線(xiàn)C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線(xiàn).

查看答案和解析>>


同步練習(xí)冊(cè)答案