題目列表(包括答案和解析)
(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來的順序)是等比數(shù)列:
①當(dāng)時(shí),求的數(shù)值;②求的所有可能值;
(II)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來的順序)都不能組成等比數(shù)列。
(文)
設(shè)函數(shù),其圖象在點(diǎn),處的切線的斜率分別為
(I)求證:;
(II)若函數(shù)的遞增區(qū)間為,求||的取值范圍;
(III)若當(dāng)時(shí)(是與無關(guān)的常數(shù)),恒有,試求的最小值。
(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來的順序)是等比數(shù)列:
①當(dāng)時(shí),求的數(shù)值;②求的所有可能值;
(II)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來的順序)都不能組成等比數(shù)列。
(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測(cè)試,一種通常采用的測(cè)試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測(cè)試。根據(jù)一輪測(cè)試中的兩次排序的偏離程度的高低為其評(píng)為。
現(xiàn)設(shè),分別以表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號(hào),并令
,
則是對(duì)兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進(jìn)行的三輪測(cè)試中,都有,
(i)試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測(cè)試相互獨(dú)立);
(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由。
一、選擇題
1. B 2. C 3. A 4. D 5. C 6. D 7. B 8. C 9. A 10. D
二、填空題
11. 192 12. 286 13. 14. 15. 840 16.
三、解答題
17. (本題12分)
解:(I)
2分
(II)
8分
由已知條件
根據(jù)正弦定理,得 10分
12分
18. (本題12分)
解:(I)在7人中選出3人,總的結(jié)果數(shù)是種, (2分)
記“被選中的3人中至多有1名女生”為事件A,則A包含兩種情形:
①被選中的是1名女生,2名男生的結(jié)果數(shù)是,
②被選中的是3名男生的結(jié)果數(shù)是 4分
至多選中1名女生的概率為 6分
(II)由題意知隨機(jī)變量可能的取值為:0,1,2,3,則有
,
8分
∴
0
1
2
3
P
10分
∴的數(shù)學(xué)期望 12分
19. (本題12分)
解:(I)連接PO,以O(shè)A,OB,OP所在的直線為x軸,y軸,z軸
建立如圖所示的空間直角坐標(biāo)系。 2分
∵正四棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2。
∴
∴
(II)∵
∴是平面PDB的一個(gè)法向量。 8分
由(I)得
設(shè)平面BMP的一個(gè)法向量為
則由,得
,不妨設(shè)c=1
得平面BMP的一個(gè)法向量為 10分
∵二面角M―PB―D小于90°
∴二面角M―PB―D的余弦值為 12分
20. (本題12分)
解:(I)由已知得
2分
由,得 4分
即。解得k=50或(舍去)
6分
(II)由,得
8分
9分
是等差數(shù)列
則
11分
12分
21. (本題14分)
解:(I)依題意得
2分
把
解得
∴橢圓的方程為 4分
(II)由(I)得,設(shè),如圖所示,
∵M(jìn)點(diǎn)在橢圓上,
∴ ①
∵M(jìn)點(diǎn)異于頂點(diǎn)A、B,
∴
由P、A、M三點(diǎn)共線,可得,
從而 7分
∴ ② 8分
將①式代入②式化簡(jiǎn)得 10分
∵
∴ 12分
于是∠MBP為銳角,從而∠MBN為鈍角,
∴點(diǎn)B在以MN為直徑的圓內(nèi)。 14分
22. (本題14分)
解:(I),
令 2分
而
∴當(dāng) 4分
(II)設(shè)函數(shù)g(x)在[0,2]上的值域是A,
∵若對(duì)任意
∴ 6分
①當(dāng),
∴函數(shù)上單調(diào)遞減。
∵
∴; 8分
②當(dāng)
令(舍去) 9分
(i)當(dāng)時(shí),的變化如下表:
(ii)當(dāng)
∴函數(shù)g(x)在(0,2)上單調(diào)遞減。
綜上可知,實(shí)數(shù)a的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com