查看更多

 

題目列表(包括答案和解析)

(本小題滿分6分,請在下列兩個小題中,任選其一完成即可)
(1)解方程:x2+3x-2=0;
(2)如圖,在邊長為1個單位長度的正方形方格紙中建立直角坐標(biāo)系,△ABC各頂點的坐標(biāo)為:A(-5,4)、B(-1,1)、C(-5,1).
①將△ABC繞著原點O順時針旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′;
②寫出A′點的坐標(biāo).

查看答案和解析>>

25.(本小題滿分14分)

如圖13,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C(0,-1),ΔABC的面積為

(1)求該二次函數(shù)的關(guān)系式;

(2)過y軸上的一點M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點,求m的取值范圍;

(3)在該二次函數(shù)的圖象上是否存在點D,使四邊形ABCD為直角梯形?若存在,求出點D的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

(本小題滿分5分)計算 : 

 

查看答案和解析>>

(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線過點、點,且與軸的另一交點為,其中>0,又點是拋物線的對稱軸上一動點.

(1)求點的坐標(biāo),并在圖1中的上找一點,使到點與點的距離之和最小;

(2)若△周長的最小值為,求拋物線的解析式及頂點的坐標(biāo);

(3)如圖2,在線段上有一動點以每秒2個單位的速度從點向點移動(不與端點重合),過點軸于點,設(shè)移動的時間為秒,試把△的面積表示成時間的函數(shù),當(dāng)為何值時,有最大值,并求出最大值.

 

查看答案和解析>>

(本小題滿分12分)

某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y =x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設(shè)月利潤為w內(nèi)(元)(利潤 = 銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2 元的附加費,設(shè)月利潤為w(元)(利潤 = 銷售額-成本-附加費).

1.(1)當(dāng)= 1000時,=        元/件,w內(nèi) =         元;

2.(2)分別求出w內(nèi),wx間的函數(shù)關(guān)系式(不必寫x的取值范圍);

3.(3)當(dāng)x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值;

4.(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內(nèi)還是在國外銷售才能使所獲月利潤較大?

參考公式:拋物線的頂點坐標(biāo)是

 

查看答案和解析>>

一、1、C;2、C;3、D;4、A;5、C;6、B;7、D;8、B;9、A;10、B;

二、11、8;2、;13、;14、

15、6;16、六;17、旋轉(zhuǎn)中心和旋轉(zhuǎn)角;18、9:30;19、4;20、5;

三、21、原式=;當(dāng)時,原式=

22、如圖,易算出AE=8米,由AC=7米,可得CE=1米,

   由比例可知:CH=1.5米1米,

   故影響采光。

23、11,17,59;S=6n-1;

24、(1)y=―x2+2x+3;(2)x=1,M(1,4),(3)9;

25、(1)相同點:甲臺階與乙臺階的各階高度參差不齊,不同點:甲臺階各階高度的極差比乙臺階。

(2)甲臺階,因為甲臺階各階高度的方差比乙臺階;

(3)使臺階的各階高度的方差越小越好。

26、(1)r=3;(2)3<r<4;(3)r=4或5;(4)r>4且r≠5;

27、(1)a=110,b=90;提示:可由解得;

(2)從表中的信息可知:該農(nóng)戶每年新增林地畝數(shù)的增長率為30%,

則2004年林地的畝數(shù)為26×(1+30%)=33.8畝,

2005年林地的畝數(shù)為33.8×(1+30%)=43.94畝,

故2005年的總收入為2000+43.94×110+33.8×90=8775.4元。

28、(1)P(摸到紅球)= P(摸到同號球)=;故沒有利;

(2)每次的平均收益為,

故每次平均損失元。

29、80cm;提示:由r=20cm,h=20cm,可得母線l=80cm,而圓錐側(cè)面展開后的扇形的弧長為,可求得圓錐側(cè)面展開后的扇形的圓心角為900,故最短距離為80cm。

30、(1)(6―x , x );  

(2)設(shè)ㄓMPA的面積為S,

在ㄓMPA中,MA=6―x,MA邊上的高為x,其中,0≤x≤6.

∴S=(6―x)×x=(―x2+6x) = ― (x―3)2+6

∴S的最大值為6,  此時x =3.  (3)延長NP交x軸于Q,則有PQ⊥OA

①若MP=PA ∵PQ⊥MA ∴MQ=QA=x. ∴3x=6,  ∴x=2; 

②若MP=MA,則MQ=6―2x,PQ=x,PM=MA=6―x

在RtㄓPMQ 中,∵PM2=MQ2+PQ2 ∴(6―x) 2=(6―2x) 2+ (x) 2

∴x=

 ③若PA=AM,∵PA=x,AM=6―x

x=6―x ∴x=  

綜上所述,x=2,或x=,或x=。

 

 


同步練習(xí)冊答案