如圖.平面直角坐標(biāo)系中.四邊形OABC為矩形.點(diǎn)A.B的坐標(biāo)分別為.動(dòng)點(diǎn)M.N分別從O.B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動(dòng).其中.點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng).點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥BC.交AC于P.連結(jié)MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.(1)P點(diǎn)的坐標(biāo)為( . ),(2)試求 ㄓMPA面積的最大值.并求此時(shí)x的值.(3)請(qǐng)你探索:當(dāng)x為何值時(shí).ㄓMPA是一個(gè)等腰三角形? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm, OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)PQ分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個(gè)定值,如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由;
(3)當(dāng)△OPQ∽△ABP時(shí),拋物線yx2+bx+c經(jīng)過(guò)B、P兩點(diǎn),求拋物線的解析式;
(4)在(3)的條件下,過(guò)線段BP上一動(dòng)點(diǎn)M軸的平
行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,已知矩形的三個(gè)頂點(diǎn)、.拋物線過(guò)兩點(diǎn).

(1)直接寫出點(diǎn)的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒.過(guò)點(diǎn)于點(diǎn)
過(guò)點(diǎn)于點(diǎn),交拋物線于點(diǎn).當(dāng)為何值時(shí),線段最長(zhǎng)?

查看答案和解析>>

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm, OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)PQ分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用含t的式子表示△OPQ的面積S
(2)判斷四邊形OPBQ的面積是否是一個(gè)定值,如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由;
(3)當(dāng)△OPQ∽△ABP時(shí),拋物線yx2+bx+c經(jīng)過(guò)B、P兩點(diǎn),求拋物線的解析式;
(4)在(3)的條件下,過(guò)線段BP上一動(dòng)點(diǎn)M軸的平
行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,已知矩形的三個(gè)頂點(diǎn)、、.拋物線過(guò)兩點(diǎn).

(1)直接寫出點(diǎn)的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒.過(guò)點(diǎn)于點(diǎn)
過(guò)點(diǎn)于點(diǎn),交拋物線于點(diǎn).當(dāng)為何值時(shí),線段最長(zhǎng)?

查看答案和解析>>

(本小題滿分12分)如圖1,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)軸上另一點(diǎn),頂點(diǎn)的坐標(biāo)為;矩形的頂點(diǎn)與點(diǎn)重合,分別在軸、軸上,且,
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)將矩形以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)也以相同的速度從點(diǎn)出發(fā)向勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為秒(),直線與該拋物線的交點(diǎn)為(如圖2所示).
①當(dāng)時(shí),判斷點(diǎn)是否在直線上,并說(shuō)明理由;
②設(shè)以為頂點(diǎn)的多邊形面積為,試問(wèn)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、1、C;2、C;3、D;4、A;5、C;6、B;7、D;8、B;9、A;10、B;

二、11、8;2、;13、;14、;

15、6;16、六;17、旋轉(zhuǎn)中心和旋轉(zhuǎn)角;18、9:30;19、4;20、5;

三、21、原式=;當(dāng)時(shí),原式=;

22、如圖,易算出AE=8米,由AC=7米,可得CE=1米,

   由比例可知:CH=1.5米1米,

   故影響采光。

23、11,17,59;S=6n-1;

24、(1)y=―x2+2x+3;(2)x=1,M(1,4),(3)9;

25、(1)相同點(diǎn):甲臺(tái)階與乙臺(tái)階的各階高度參差不齊,不同點(diǎn):甲臺(tái)階各階高度的極差比乙臺(tái)階;

(2)甲臺(tái)階,因?yàn)榧着_(tái)階各階高度的方差比乙臺(tái)階。

(3)使臺(tái)階的各階高度的方差越小越好。

26、(1)r=3;(2)3<r<4;(3)r=4或5;(4)r>4且r≠5;

27、(1)a=110,b=90;提示:可由解得;

(2)從表中的信息可知:該農(nóng)戶每年新增林地畝數(shù)的增長(zhǎng)率為30%,

則2004年林地的畝數(shù)為26×(1+30%)=33.8畝,

2005年林地的畝數(shù)為33.8×(1+30%)=43.94畝,

故2005年的總收入為2000+43.94×110+33.8×90=8775.4元。

28、(1)P(摸到紅球)= P(摸到同號(hào)球)=;故沒(méi)有利;

(2)每次的平均收益為

故每次平均損失元。

29、80cm;提示:由r=20cm,h=20cm,可得母線l=80cm,而圓錐側(cè)面展開(kāi)后的扇形的弧長(zhǎng)為,可求得圓錐側(cè)面展開(kāi)后的扇形的圓心角為900,故最短距離為80cm。

30、(1)(6―x , x );  

(2)設(shè)ㄓMPA的面積為S,

在ㄓMPA中,MA=6―x,MA邊上的高為x,其中,0≤x≤6.

∴S=(6―x)×x=(―x2+6x) = ― (x―3)2+6

∴S的最大值為6,  此時(shí)x =3.  (3)延長(zhǎng)NP交x軸于Q,則有PQ⊥OA

①若MP=PA ∵PQ⊥MA ∴MQ=QA=x. ∴3x=6,  ∴x=2; 

②若MP=MA,則MQ=6―2x,PQ=x,PM=MA=6―x

在RtㄓPMQ 中,∵PM2=MQ2+PQ2 ∴(6―x) 2=(6―2x) 2+ (x) 2

∴x=

 ③若PA=AM,∵PA=x,AM=6―x

x=6―x ∴x=  

綜上所述,x=2,或x=,或x=。

 

 


同步練習(xí)冊(cè)答案