問可求得 查看更多

 

題目列表(包括答案和解析)

第十部分 磁場

第一講 基本知識介紹

《磁場》部分在奧賽考剛中的考點很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復合場中的運動進行了更深入的分析。

一、磁場與安培力

1、磁場

a、永磁體、電流磁場→磁現(xiàn)象的電本質(zhì)

b、磁感強度、磁通量

c、穩(wěn)恒電流的磁場

*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導體元段,在距離為r的點激發(fā)的“元磁感應強度”為dB 。矢量式d= k,(d表示導體元段的方向沿電流的方向、為導體元段到考查點的方向矢量);或用大小關系式dB = k結合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應用畢薩定律再結合矢量疊加原理,可以求解任何形狀導線在任何位置激發(fā)的磁感強度。

畢薩定律應用在“無限長”直導線的結論:B = 2k 

*畢薩定律應用在環(huán)形電流垂直中心軸線上的結論:B = 2πkI ;

*畢薩定律應用在“無限長”螺線管內(nèi)部的結論:B = 2πknI 。其中n為單位長度螺線管的匝數(shù)。

2、安培力

a、對直導體,矢量式為 = I;或表達為大小關系式 F = BILsinθ再結合“左手定則”解決方向問題(θ為B與L的夾角)。

b、彎曲導體的安培力

⑴整體合力

折線導體所受安培力的合力等于連接始末端連線導體(電流不變)的的安培力。

證明:參照圖9-1,令MN段導體的安培力F1與NO段導體的安培力F2的合力為F,則F的大小為

F = 

  = BI

  = BI

關于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。

證畢。

由于連續(xù)彎曲的導體可以看成是無窮多元段直線導體的折合,所以,關于折線導體整體合力的結論也適用于彎曲導體。(說明:這個結論只適用于勻強磁場。)

⑵導體的內(nèi)張力

彎曲導體在平衡或加速的情形下,均會出現(xiàn)內(nèi)張力,具體分析時,可將導體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學方程求解。

c、勻強磁場對線圈的轉(zhuǎn)矩

如圖9-2所示,當一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉(zhuǎn)動(并自動選擇垂直B的中心軸OO′,因為質(zhì)心無加速度),此瞬時的力矩為

M = BIS

幾種情形的討論——

⑴增加匝數(shù)至N ,則 M = NBIS ;

⑵轉(zhuǎn)軸平移,結論不變(證明從略);

⑶線圈形狀改變,結論不變(證明從略);

*⑷磁場平行線圈平面相對原磁場方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;

證明:當α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…

⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。

證明:當β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…

說明:在默認的情況下,討論線圈的轉(zhuǎn)矩時,認為線圈的轉(zhuǎn)軸垂直磁場。如果沒有人為設定,而是讓安培力自行選定轉(zhuǎn)軸,這時的力矩稱為力偶矩。

二、洛侖茲力

1、概念與規(guī)律

a、 = q,或展開為f = qvBsinθ再結合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。

b、能量性質(zhì)

由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭恿堪l(fā)生改變卻不能使其動能發(fā)生改變。

問題:安培力可以做功,為什么洛侖茲力不能做功?

解說:應該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個問題:(1)導體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導體運動時,粒子參與的是沿導體棒的運動v1和導體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。

很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數(shù)和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數(shù)量級,而v2一般都在10?2m/s數(shù)量級以上,致使f1只是f的一個極小分量。)

☆如果從能量的角度看這個問題,當導體棒放在光滑的導軌上時(參看圖9-6),導體棒必獲得動能,這個動能是怎么轉(zhuǎn)化來的呢?

若先將導體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導體棒釋放后,導體棒受安培力加速,將形成感應電動勢(反電動勢)。動力學分析可知,導體棒的最后穩(wěn)定狀態(tài)是勻速運動(感應電動勢等于電源電動勢,回路電流為零)。由于達到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時間內(nèi)發(fā)的焦耳熱將比導體棒被卡住時少。所以,導體棒動能的增加是以回路焦耳熱的減少為代價的。

2、僅受洛侖茲力的帶電粒子運動

a、時,勻速圓周運動,半徑r =  ,周期T = 

b、成一般夾角θ時,做等螺距螺旋運動,半徑r =  ,螺距d = 

這個結論的證明一般是將分解…(過程從略)。

☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運動?

其實,在圖9-7中,B1平行v只是一種暫時的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現(xiàn)的。)

3、磁聚焦

a、結構:見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。

b、原理:由于控制極和共軸膜片的存在,電子進磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。

4、回旋加速器

a、結構&原理(注意加速時間應忽略)

b、磁場與交變電場頻率的關系

因回旋周期T和交變電場周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、質(zhì)譜儀

速度選擇器&粒子圓周運動,和高考要求相同。

第二講 典型例題解析

一、磁場與安培力的計算

【例題1】兩根無限長的平行直導線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導線之間且在兩導線所在平面內(nèi)的、與a導線相距10cm的P點的磁感強度。

【解說】這是一個關于畢薩定律的簡單應用。解題過程從略。

【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內(nèi)張力。

【解說】本題有兩種解法。

方法一:隔離一小段弧,對應圓心角θ ,則弧長L = θR 。因為θ 

查看答案和解析>>

第七部分 熱學

熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數(shù)目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。

一、分子動理論

1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)

對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。

【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。

【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。

由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v = 

而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,

即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

【答案】3.97×10-10m 。

〖思考〗本題還有沒有其它思路?

〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)

2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運動

固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。

無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關。

氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術平均值, ==;方均根速率:與分子平均動能密切相關的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

【例題2】證明理想氣體的壓強P = n,其中n為分子數(shù)密度,為氣體分子平均動能。

【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。

考查yoz平面的一個容器壁,P =            ①

設想在Δt時間內(nèi),有Nx個分子(設質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力

 F ==                            ②

在氣體的實際狀況中,如何尋求Nx和vx呢?

考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足

v2 =  +  + 

分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即

 =  +  +  = 3                    ③

這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則

 Nx = ·3N = na3                         ④

注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。

結合①②③④式不難證明題設結論。

〖思考〗此題有沒有更簡便的處理方法?

〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。

分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。

分子勢能和動能的總和稱為物體的內(nèi)能。

二、熱現(xiàn)象和基本熱力學定律

1、平衡態(tài)、狀態(tài)參量

a、凡是與溫度有關的現(xiàn)象均稱為熱現(xiàn)象,熱學是研究熱現(xiàn)象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質(zhì)不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。

b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

c、熱力學第零定律(溫度存在定律):若兩個熱力學系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。

2、溫度

a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。

b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉(zhuǎn)動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動能的標志。

c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)

3、熱力學過程

a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = K

查看答案和解析>>

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。

一、簡諧運動

1、簡諧運動定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點,均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運動的方程

回避高等數(shù)學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關名詞:(ωt +φ)稱相位,φ稱初相。

運動學參量的相互關系:= -ω2

A = 

tgφ= -

3、簡諧運動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當質(zhì)點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構成了質(zhì)點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;

當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;

當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。

4、簡諧運動的周期

由②式得:ω=  ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運動的能量

一個做簡諧運動的振子的能量由動能和勢能構成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關參量(決定參量的物理因素)

2、機械波的描述

a、波動圖象。和振動圖象的聯(lián)系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質(zhì)點的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。

當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點和高考要求相同。

5、多普勒效應

當波源或者接受者相對與波的傳播介質(zhì)運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對介質(zhì)運動(如圖3所示)

設接收者以速度v1正對靜止的波源運動。

如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,

當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、

在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波

n = 

顯然,在單位時間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質(zhì)運動(如圖4所示)

設波源以速度v2正對靜止的接收者運動。

如果波源S不動,在單位時間內(nèi),接收者在A點應接收f個波,故S到A的距離:= fλ 

在單位時間內(nèi),S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當v2背離接收者,或有一定夾角的討論,類似a情形。

c、當接收者和波源均相對傳播介質(zhì)運動

當接收者正對波源以速度v1(相對介質(zhì)速度)運動,波源也正對接收者以速度v2(相對介質(zhì)速度)運動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運動的證明與周期計算

物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。

模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…

答案:木板運動周期為2π 。

鞏固應用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導軌,一電動松鼠可在導軌上運動。現(xiàn)觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運動的定義式。

答案:松鼠做簡諧運動。

評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運動

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

第三部分 運動學

第一講 基本知識介紹

一. 基本概念

1.  質(zhì)點

2.  參照物

3.  參照系——固連于參照物上的坐標系(解題時要記住所選的是參照系,而不僅是一個點)

4.絕對運動,相對運動,牽連運動:v=v+v 

二.運動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學教材中表述為:v=dr/dt, 表示r對t 求導數(shù)

5.以上是運動學中的基本物理量,也就是位移、位移的一階導數(shù)、位移的二階導數(shù)。可是

三階導數(shù)為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導數(shù)叫“急動度”。)

6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

三.等加速運動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學家曾經(jīng)研究,當大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當飛機在哪一區(qū)域飛行之外時,不會有危險?(注:結論是這一區(qū)域為一拋物線,此拋物線是所有炮彈拋物線的包絡線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉(zhuǎn)動

1. 我們講過的圓周運動是平動而不是轉(zhuǎn)動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標量,而極小的角位移是矢量

4.  同一剛體上兩點的相對速度和相對加速度 

兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質(zhì)點速度分別V,VB  ,VC      

求G的速度。

五.課后習題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時間T木筏劃到路線上標有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當跨過B的兩段繩子的夾角為α時,A的運動速度。

(vA

(2)拋體運動問題的一般處理方法

  1. 平拋運動
  2. 斜拋運動
  3. 常見的處理方法

(1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學公式解題

(3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

(α=、 x=

第二講 運動的合成與分解、相對運動

(一)知識點點撥

  1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
  2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉(zhuǎn)換:動參考系,靜參考系

相對運動:動點相對于動參考系的運動

絕對運動:動點相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運動

牽連運動:動參考系相對于靜參考系的運動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

提示:矢量關系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計算自動扶梯的臺階數(shù)?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設風速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風速。

4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

(四)同步練習提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點只繞A轉(zhuǎn)動。但鑒于桿子的實際運動情形如右圖,應有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對A的轉(zhuǎn)動線速度為:v轉(zhuǎn) + vAsinθ=  

P點的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

(08年姜堰市第二中學三模)(10分)某同學利用氣墊導軌做“探究加速度與質(zhì)量和力的關系”實驗,步驟是:

 
 

 

 

 

 

 

 

 

 

 


①     調(diào)平氣墊導軌,在通氣情況下滑塊在導軌上不移動,然后關掉氣源

②     將兩個光電門裝在氣墊導軌上(距導軌兩端均還有一定的距離),并記下兩個光電門間的距離L

③     測出遮光片的寬度d,將遮光片裝在滑塊上

④     將氣墊導軌的一端墊上一定厚度的墊片,使氣墊導軌兩端的高度差為h

⑤       接通氣源,讓滑塊從導軌的一端由靜止開始下滑,記下滑塊先后經(jīng)過兩光電門的遮光時間t1、t2(均為毫秒級)

⑥     改變墊片的厚度,使氣墊導軌兩端的高度差分別為2h、3h、……重復實驗

請回答以下問題:

 

(1)用游標卡尺測量遮光片的寬度d,卡尺數(shù)如圖所示,則d             cm。

(2)該同學根據(jù)以上實驗可以求出滑塊經(jīng)過兩個光電門時的速度,其表達式是

V1=_________________   V2=__________________(用直接測得的物理量字母表示)

(3)該同學根據(jù)以上實驗可以求出滑塊經(jīng)過兩個光電門這段位移的加速度,其表達式是a=                     (用直接測得的物理量字母表示)

(4)該同學通過實驗得到了一組數(shù)據(jù)(見下表),請你在坐標紙中做出a-h圖像,從圖像中得到a與h的關系是:_______________________________________.

 

 

(5)該同學由以上關系下結論說:在質(zhì)量不變的情況下,滑塊的加速度與所受合外力成正比,該同學的依據(jù)是                                         .

查看答案和解析>>


同步練習冊答案