若曲線y=f(x)上存在三點(diǎn)A.B.C,使,則稱點(diǎn)曲線有“中位點(diǎn) .下列曲線:①y=cosx, ②,③,④y=cosx+x2,⑤,有“中位點(diǎn) 的有 (寫出所有滿足要求的序號(hào)) 查看更多

 

題目列表(包括答案和解析)

若曲線y=f(x)上存在三點(diǎn)A,B,C,使得
AB
=
BC
,則稱曲線有“中位點(diǎn)”,下列曲線
(1)y=cosx,(2)y=
1
x
,(3)y=x3+x2-2,(4)y=x3有“中位點(diǎn)”的是( 。
A、(2)(4)
B、(1)(3)(4)
C、(1)(2)(4)
D、(2)(3)(4)

查看答案和解析>>

已知橢圓C:的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似三角形,則稱這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1以拋物線的焦點(diǎn)為一個(gè)焦點(diǎn),且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點(diǎn)P(m,n)(mn≠0)是橢圓C1上的任一點(diǎn),若點(diǎn)Q是直線y=nx與拋物線異于原點(diǎn)的交點(diǎn),證明點(diǎn)Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長(zhǎng)為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似三角形,則稱這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點(diǎn)為一個(gè)焦點(diǎn),且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點(diǎn)P(m,n)(mn≠0)是橢圓C1上的任一點(diǎn),若點(diǎn)Q是直線y=nx與拋物線x2=
1
mn
y
異于原點(diǎn)的交點(diǎn),證明點(diǎn)Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長(zhǎng)為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請(qǐng)說明理由.

查看答案和解析>>

 

說明:

    一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則。

    二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分。

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分。

一、選擇題:本大題共10小題,每小題5分,共50分。

1―5 BADBB    6―10 ACCDA

二、填空題:本大題共5小題,每小題4分,共20分。

11.     12.甲      13.7      14.         15.①③⑤

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟。

  16.解:……………………………………………………2分

       ………………………………………………………………4分

………………………………………………………………6分

………………………………………………9分

       …………………………11分

       ………………………………………………13分

<acronym id="6cljw"><blockquote id="6cljw"></blockquote></acronym>
      1. <sup id="6cljw"><small id="6cljw"></small></sup>

              則SA⊥BC。又∠ABC=90°,即AB⊥BC,

              于是BC⊥面SAB……………………………………5分

              為直角三角形!6分

                 (2)解法一:延長(zhǎng)BA,CD交于E,則SE為所求二面角,

                  由AD//BC且BC=2AD,

                  得AE+AS=ABSE⊥SB,

                  又由SA⊥面ABCD面SAB⊥面ABCD。

              結(jié)合∠ABC=90°,得

              因此,的平面角。

              解法二:取SB、BC的中點(diǎn)分別為G、H,

              連結(jié)AG、GB、AH、由CH//SC,AB//DC,

              得面AGB//面SDC。

              ∴所求的二面角即為面AGH與面AGB所成的角

              由于AG⊥SB,BR⊥面SAB。

              ∴∠BGH為所求二面角的平面角。

              在直角三角GBD中,

              即面SDC與面SAB所成二面角的正切值為                                …………13分

              18.解:(1)某員工獲得一等獎(jiǎng)的概率為………………4分

              (2)∵某員工獲三等獎(jiǎng)的概率為…………………7分

                  獲二等獎(jiǎng)的概率為…………………9分

              ∴某員工所獲獎(jiǎng)品價(jià)值Y(無)的概率分布為:

              Y

              200

              100

              50

              P

              ……………………10分

              (3)EY=200×+100×+50×=

              ∴該單位需準(zhǔn)備獎(jiǎng)品的價(jià)值約為元………………13分

              19.解:…………2分

              (1)

              ∴曲線處的切線方程為

              ………………4分

              (2)令

              當(dāng)

              上為減函數(shù),在上增函數(shù)!6分

              當(dāng)在R上恒成立。

              上為減函數(shù)!7分

              當(dāng)

              上為增函數(shù)!8分

              綜上,當(dāng)時(shí),

              單調(diào)遞減區(qū)間為。

              當(dāng)

              當(dāng)

              單調(diào)遞減區(qū)間為(),()……………………9分

              (3)a>0時(shí),列表得:

              1

              (1,+

              +

              0

              0

              +

              極大值

              極小值

              從而,當(dāng)…………11分

              由題意,不等式恒成立,

              所以得

              從而a的取值范圍為……………………13分

              20.解:(Ⅰ)圓,

              半徑

              QM是P的中垂線,連結(jié)AQ,則|AQ|=|QP|

              ,

              根據(jù)橢圓的定義,點(diǎn)Q軌跡是以C(-,0),A(,0)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為2  的橢圓,……………………2分

              因此點(diǎn)Q的軌跡方程為………………4分

              (Ⅱ)(1)證明:當(dāng)直線l垂直x軸時(shí),由題意知:

              不妨取代入曲線E的方程得:

               

              即G(,),H(,-)有兩個(gè)不同的交點(diǎn),………………5分

              當(dāng)直線l不垂直x軸時(shí),設(shè)直線l的方程為:

              由題意知:

              ∴直線l與橢圓E交于兩點(diǎn)

              綜上,直線l必與橢圓E交于兩點(diǎn)…………………………8分

              (2)由(1)知當(dāng)直線l垂直x軸時(shí),

              ………………9分

              當(dāng)直線l不垂直x軸時(shí)

              設(shè)(1)知

              …………………………10分

              當(dāng)且僅當(dāng),則取得“=”

              ……………………12分

              當(dāng)k=0時(shí),…………………………13分

              綜上,△OGH的面積的最小值為……………………14分

              21.(1)解:矩陣A的特征多項(xiàng)式為

                  …………………………2分

              ,得矩陣A的特征值為……………………………3分

              對(duì)于特征值解相應(yīng)的線性方程組得一個(gè)非零解,

              因此,是矩陣A的屬于特征值的一個(gè)特征向量!5分

              對(duì)于特征值解相應(yīng)的線性方程組得一個(gè)非零解,

              因此,是矩陣A的屬于特征值的一個(gè)特征向量。………………7分

              2.解:(1)兩圓的極坐標(biāo)方程可化為

              ∴兩圓的直角坐標(biāo)方程是………………4分

              (2)根據(jù)(1)可知道兩圓心的直角坐標(biāo)是O1(1,0)和O2(0,a)

              ……………………7分

              3.解:(1)∵

              ∴當(dāng)x<1時(shí),3-2x>3,解得x<0;

              當(dāng)1無解

              當(dāng)x>2時(shí)2x-3>3,解得x<3.

              綜上,x<0或x>3,

              ∴不等式f(x)>3的解集為……………………4分

              (2)∵      ∴

              恒成立

              ∴a<1,即實(shí)數(shù)a的取值范圍是………………………………7分

               


              同步練習(xí)冊(cè)答案
              <noscript id="6cljw"></noscript>