16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問題,在半小時內,甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨立地在半小時內解決它,計算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列的通項公式;

(2) 設+…+,,其中,…試比較的大小,并證明你的結論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運往B地,已知貨船的最大航行速度為35海里/小時,A地至B地之間的航行距離約為500海里,每小時的運輸成本由燃料費和其余費用組成,輪船每小時的燃料費用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費用為每小時960元.

(1)把全程運輸成本y(元)表示為速度x(海里/小時)的函數(shù);

(2)為了使全程運輸成本最小,輪船應以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,F(xiàn)B=FC, 是平面ABCD內的兩點,都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

 

說明:

    一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內容比照評分標準制定相應的評分細則。

    二、對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應給分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分。

    三、解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù)。

    四、只給整數(shù)分數(shù),選擇題和填空題不給中間分。

一、選擇題:本大題共10小題,每小題5分,共50分。

1―5 BADBB    6―10 ACCDA

二、填空題:本大題共5小題,每小題4分,共20分。

11.     12.甲      13.7      14.         15.①③⑤

三、解答題:本大題共6小題,共80分,解答應寫出文字說明、證明過程或演算步驟。

  16.解:……………………………………………………2分

       ………………………………………………………………4分

………………………………………………………………6分

………………………………………………9分

       …………………………11分

       ………………………………………………13分

則SA⊥BC。又∠ABC=90°,即AB⊥BC,

于是BC⊥面SAB……………………………………5分

為直角三角形。………………6分

   (2)解法一:延長BA,CD交于E,則SE為所求二面角,

    由AD//BC且BC=2AD,

    得AE+AS=ABSE⊥SB,

    又由SA⊥面ABCD面SAB⊥面ABCD。

結合∠ABC=90°,得

因此,的平面角。

  • 解法二:取SB、BC的中點分別為G、H,

    連結AG、GB、AH、由CH//SC,AB//DC,

    得面AGB//面SDC。

    ∴所求的二面角即為面AGH與面AGB所成的角

    由于AG⊥SB,BR⊥面SAB。

    ∴∠BGH為所求二面角的平面角。

    在直角三角GBD中,

    即面SDC與面SAB所成二面角的正切值為                                …………13分

    18.解:(1)某員工獲得一等獎的概率為………………4分

    (2)∵某員工獲三等獎的概率為…………………7分

        獲二等獎的概率為…………………9分

    ∴某員工所獲獎品價值Y(無)的概率分布為:

    Y

    200

    100

    50

    P

    ……………………10分

    (3)EY=200×+100×+50×=

    ∴該單位需準備獎品的價值約為元………………13分

    19.解:…………2分

    (1)

    ∴曲線處的切線方程為

    ………………4分

    (2)令

    上為減函數(shù),在上增函數(shù)!6分

    在R上恒成立。

    上為減函數(shù)!7分

    上為增函數(shù)!8分

    綜上,當時,

    單調遞減區(qū)間為。

    單調遞減區(qū)間為(),()……………………9分

    (3)a>0時,列表得:

    1

    (1,+

    +

    0

    0

    +

    極大值

    極小值

    從而,當…………11分

    由題意,不等式恒成立,

    所以得

    從而a的取值范圍為……………………13分

    20.解:(Ⅰ)圓

    半徑

    QM是P的中垂線,連結AQ,則|AQ|=|QP|

    ,

    根據(jù)橢圓的定義,點Q軌跡是以C(-,0),A(,0)為焦點,長軸長為2  的橢圓,……………………2分

    因此點Q的軌跡方程為………………4分

    (Ⅱ)(1)證明:當直線l垂直x軸時,由題意知:

    不妨取代入曲線E的方程得:

     

    即G(),H(,-)有兩個不同的交點,………………5分

    當直線l不垂直x軸時,設直線l的方程為:

    由題意知:

    ∴直線l與橢圓E交于兩點

    綜上,直線l必與橢圓E交于兩點…………………………8分

    (2)由(1)知當直線l垂直x軸時,

    ………………9分

    當直線l不垂直x軸時

    (1)知

    …………………………10分

    當且僅當,則取得“=”

    ……………………12分

    當k=0時,…………………………13分

    綜上,△OGH的面積的最小值為……………………14分

    21.(1)解:矩陣A的特征多項式為

        …………………………2分

    ,得矩陣A的特征值為……………………………3分

    對于特征值解相應的線性方程組得一個非零解,

    因此,是矩陣A的屬于特征值的一個特征向量!5分

    對于特征值解相應的線性方程組得一個非零解

    因此,是矩陣A的屬于特征值的一個特征向量!7分

    2.解:(1)兩圓的極坐標方程可化為

    ∴兩圓的直角坐標方程是………………4分

    (2)根據(jù)(1)可知道兩圓心的直角坐標是O1(1,0)和O2(0,a)

    ……………………7分

    3.解:(1)∵

    ∴當x<1時,3-2x>3,解得x<0;

    當1無解

    當x>2時2x-3>3,解得x<3.

    綜上,x<0或x>3,

    ∴不等式f(x)>3的解集為……………………4分

    (2)∵      ∴

    恒成立

    ∴a<1,即實數(shù)a的取值范圍是………………………………7分

     


    同步練習冊答案