(2)令求數列的前項和. 查看更多

 

題目列表(包括答案和解析)

等差數列的前項和記為,已知.
(1)求數列的通項
(2)若,求
(3)令,求證:數列為等比數列.

查看答案和解析>>

已知數列的前項和為,若,,

(1)求數列的通項公式:

(2)令,

①當為何正整數值時,;

②若對一切正整數,總有,求的取值范圍.

 

查看答案和解析>>

已知數列的前項和為,并且滿足

(1)求的通項公式;

(2)令,問是否存在正整數,對一切正整數,總有?若存在,求出的值,若不存在,說明理由.

 

查看答案和解析>>

等差數列的前項和記為,已知.

(1)求數列的通項

(2)若,求;

(3)令,求證:數列為等比數列.

 

查看答案和解析>>

數列的前n項和記為在直線上,.(1)若數列是等比數列,求實數的值;
(2)設各項均不為0的數列中,所有滿足的整數的個數稱為這個數列的“積異號數”,令),在(1)的條件下,求數列的“積異號數”

查看答案和解析>>

一、選擇題

1.B    2.C    3.C    4.C    5.B    6.A

7.A    8.D    9.B    10.D   

二、填空題

11.86;1.6;12.1/6   13.( 4,8)   14.108   15.(1),(2),(3)

三、解答題

16.解:(1)由已知得 解得.設數列的公比為,

,可得.又,可知,

,

解得. 由題意得. 

故數列的通項為.……………………………6分

   (2)由于   由(1)得 

   

=  ……………..13分

17.(1)∵=a, AB=2a,BC=a,

E為的中點。

,

DE⊥CE……(2分)

又∵∴DE⊥EB  ,而                      

∴DE⊥平面BCE…(6分)

(2) 取DC的中點F,則EF⊥平面BCD,作FH⊥BD于H,連EH,則∠EHF就是二面角E-BD-C的一個平面角!8分)

由題意得  EF=a,在Rt△ 中,…………(10分)

∠EHF=.……………………………………………(13分)

18.解:由已知,,

(1)若。若A是直角,則k=-2;若B是直角,則

k(2-k)+3=0, k=-1,k=3;若C是直角,則2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率為

(2)若且k≠.區(qū)間長度L=6.若B是鈍角,則-k(2-k)-3<0, -1<k<3,L′=4. △ABC中B是鈍角的概率

k(2-k)+3=0, k=-1,k=3;若C是直角,則2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率為.

求△ABC是直角三角形的概率.

19.解:(Ⅰ)設P(x,y),由橢圓定義可知,點P的軌跡C是以為焦點,

長半軸為2的橢圓.它的短半軸,

故曲線C的方程為.????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)設,其坐標滿足

消去y并整理得,

.??????????????????????????????????????????????????????????????????????? 6分

,即.而,

于是

所以時,,故.???????????????????????????????????????????????????????? 8分

時,,

,

所以.   13分

20.解:(1) 

,

函數有一個零點;當時,,函數有兩個零點。…….3分

   (2)假設存在,由①知拋物線的對稱軸為x=-1,∴ 

由②知對,都有

又因為恒成立, 

,即,即

,

時,,其頂點為(-1,0)滿足條件①,又,都有,滿足條件②。

∴存在,使同時滿足條件①、②。…..8分

   (3)令,則

內必有一個實根。即,使成立!.13分

21.(1)1;    (2)

 

(2)(1)設M=,則有=,=,

所以   解得,所以M=.…………………………5分

(2)任取直線l上一點P(x,y)經矩陣M變換后為點P’(x’,y’).

因為,所以又m:,

所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………7分

不等式證明選講)若,證明 。

柯西不等式一步可得

 

www.ks5u.com

 

 


同步練習冊答案