1.[解析]C .故 . 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運(yùn)用。

(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對(duì)稱軸為

(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因?yàn)?/p>

由余弦定理得,……11分故

 

查看答案和解析>>

已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

(3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得

第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè)

由于點(diǎn)M在橢圓C上,所以

由已知,則

,

由于,故當(dāng)時(shí),取得最小值為

計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>


同步練習(xí)冊(cè)答案