題目列表(包括答案和解析)
【解析】函數,點表示坐標原點,點,若向量
=,是與的夾角,(其
中),設,則=1.
答案 1
(本小題滿分12分)
如圖ABCD—A1B1C1D1是正方體, M、N分別是線段AD1和BD上的中點
(Ⅰ)證明: 直線MN∥平面B1D1C;
(Ⅱ)設正方體ABCD-A1B1C1D1棱長為,若以為坐標原點,分別以所在的直線為軸、軸、軸,建立空間直角坐標系,試寫出B1、M兩點的坐標,并求線段B1M的長.
如圖,已知點,圓是以為直徑的圓,直線,(為參數).
(1)以坐標原點為極點,軸正半軸為極軸,建立極坐標系,求圓的極坐標方程;
(2)過原點作直線的垂線,垂足為,若動點滿足,當變化時,求點軌跡的參數方程,并指出它是什么曲線.
【解析】(1)圓C的普通方程為, (2’)
極坐標方程為。 (4’)
(2)直線l的普通方程為, (5’)
點 (7’)
(9’)
點M軌跡的參數方程為,圖形為圓
設, .
(1)當時,求曲線在處的切線方程;
(2)如果存在,使得成立,求滿足上述條件的最大整數;
(3)如果對任意的,都有成立,求實數的取值范圍.
【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在,轉化解決;(3)任意的,都有成立即恒成立,等價于恒成立
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是
(2)當m=4時,曲線C的方程為,點A,B的坐標分別為,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設點M,N的坐標分別為,則
直線BM的方程為,點G的坐標為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com