④若.且.則, 其中真命題的序號(hào)是 (請(qǐng)把真命題的序號(hào)都填上). 查看更多

 

題目列表(包括答案和解析)

下列命題:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
π
2
),則f(sin θ)>f(cos θ);
②若銳角α,β滿足cos α>sin β,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對(duì)x∈R恒成立;
④要得到函數(shù)y=sin(
x
2
-
π
4
)
的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個(gè)單位,
其中真命題是
 
(把你認(rèn)為所有正確的命題的序號(hào)都填上).

查看答案和解析>>

已知命題p:方程x2-mx+1=0有兩個(gè)不等的正實(shí)數(shù)根;命題q:方程4x2+4(m-2)x+m2=0無(wú)實(shí)數(shù)根;若“p或q”為真,“p且q”為假,則下列結(jié)論:
(1)p、q都為真;
(2)p、q都為假;
(3)p、q一真一假;
(4)p、q中至少有一個(gè)為真;
(5)p、q至少有一個(gè)為假.
其中正確結(jié)論的序號(hào)是
(3)
(3)
,m的取值范圍是
1<m≤2
1<m≤2

查看答案和解析>>

以下命題是真命題的序號(hào)為

①若ac=bc,則a=b.
②若△ABC內(nèi)接于橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,則其外心與橢圓的中心O不會(huì)重合.
③記f(x)•g(x)=0的解集為A,f(x)=0或g(x)=0的解集為B,則A=B.
④拋物線C1:y2=2p1x(p1>0),拋物線C2:y2=2p2x(p2>0),且p1≠p2;過(guò)原點(diǎn)O的直線l與拋物線C1,C2分別交于點(diǎn)A1,A2,過(guò)原點(diǎn)O的直線m與拋物線C1,C2分別交于點(diǎn)B1,B2,(l與m不重合),則A1B1平行A2B2

查看答案和解析>>

已知命題p:方程x2-mx+1=0有兩個(gè)不相等的正實(shí)數(shù)根;命題q:方程4x2+4(m-2)x+m2=0無(wú)實(shí)數(shù)根.若“p或q”為真,“p且q”為假,則下列結(jié)論:①p、q都為真;②p、q都為假;③p、q一真一假;④p、q中至少有一個(gè)為真;⑤p、q中至少有一個(gè)為假.其中正確結(jié)論的序號(hào)為,m的取值范圍是___________.

查看答案和解析>>

下列命題:

①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈,則f(sin θ)>f(cos θ);

②若銳角α,β滿足cos α>sin β,則α+β<;

③若f(x)=2cos2-1,則f(x+π)=f(x)對(duì)x∈R恒成立;

④要得到函數(shù)y=sin的圖象,只需將y=sin的圖象向右平移個(gè)單位,其中真命題是________(把你認(rèn)為所有正確的命題的序號(hào)都填上).

 

查看答案和解析>>

一、選擇題(每小題5分,共60分)

   BDACC   ACDDB  AA

二、填空題(每小題4分,共16分)

  (13) ;   (14);   (15);   (16)②③。

三、解答題(共74分)

(17)解:(I)由于弦定理

代入。

                                           …………………………………4分

      ……………………………………6分

                              ……………………………………7分

                   …………………………………8分

(Ⅱ),                     ………………………………10分

 由,得。             ………………………………11分

所以,當(dāng)時(shí),取得最小值為0,   ………………………………12分

(18)解:(I)由已知得

              故

              即

              故數(shù)列為等比數(shù)列,且

              又當(dāng)時(shí),

                                   ………………………………6分

              而亦適合上式

                                …………………………………8分

         (Ⅱ)

               所以

                     

                                      ………………………………12分

(19)解:(I)由該四棱錐的三視圖可知,該四棱錐的底面的邊長(zhǎng)為1的正方形,側(cè)棱,

                                                   ……………………………4分

        (Ⅱ)連結(jié),則的中點(diǎn),

             的中點(diǎn),

            

             又平面內(nèi),

             平面                   ………………8分

        (Ⅲ)不論點(diǎn)在何位置,都有   ………………9分

             證明:連結(jié)是正方形,

                  

                  

                   又

                  

                           …………12分

(20分)解:

(I)利用樹(shù)形圖我們可以列出連續(xù)抽取2張卡片的所有可能結(jié)果(如下圖所示)。

            由上圖可以看出,實(shí)驗(yàn)的所有可能結(jié)果數(shù)為20.因?yàn)槊看味茧S機(jī)抽取,因次

這20種結(jié)果出現(xiàn)的可能性是相同的,實(shí)驗(yàn)屬于古典概型。 ……………2分用

表示事“連續(xù)抽取2人都是女生”,則互斥,并且表示事

件“連續(xù)抽取2張卡片,取出的2人不全是男生”,由列出的所有可能結(jié)果可

以看出,的結(jié)果有12種,的結(jié)果有2種,由互斥事件的概率加法公式,

可得

,

即連續(xù)抽取2張卡片,取出的2人不全是男生的概率為0.7……………6分

      (Ⅱ)有放回地連續(xù)抽取2張卡片,需注意同一張卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我們用一個(gè)有序?qū)崝?shù)對(duì)表示抽取的結(jié)果,例如“第一次取出2號(hào),第二次取出4號(hào)”就用(2,4)來(lái)表示,所有的可能結(jié)果可以用下表列出。

   

   第二次抽取

 

第一次抽取

1

2

3

4

5

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

5

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

       

           試驗(yàn)的所有可能結(jié)果數(shù)為25,并且這25種結(jié)果出現(xiàn)的可能性是相同的,試驗(yàn)屬于古典型。                                …………………………8分

           用表示事件“獨(dú)唱和朗誦由同一個(gè)人表演”,由上表可以看出,的結(jié)果共

有5種,因此獨(dú)唱和朗誦由同一個(gè)人表演的概率

                      ……………………………12分

(21)解:

(I)

          依題意有                           ………………………2分

          即  解得          …………………………4分

         

          由,得                   

           的單調(diào)遞減區(qū)間是            ………………………6分

     (Ⅱ)由  得   ………………………8分

           不等式組確定的平面區(qū)域如圖陰影部分所示:

           由   得        ………………………8分

            不等式組確定的平面區(qū)域如圖陰影部分所示:

           由   得

            點(diǎn)的坐標(biāo)為(0,-1).   ………………10分

           設(shè)表示平面區(qū)域內(nèi)的點(diǎn)()與點(diǎn)

            連線斜率。

            由圖可知,

            即……………12分

(22)解:

(I)設(shè)橢圓方程為

     則根據(jù)題意,雙曲線的方程為

     且滿足

           解方程組得    ……………………4分

     橢圓的方程為,雙曲線的方程 ………………6分

(Ⅱ)由(I)得

      設(shè)則由的中點(diǎn),所以點(diǎn)坐標(biāo)為

坐標(biāo)代入橢圓和雙曲線方程,得

消去,得

解之得(舍)

所以,由此可得

所以                        …………………………10分

當(dāng)時(shí),直線的方程是

代入,得

所以或-5(舍)                ……………………………12分

所以

軸。

所以   ……………………14分

 

 


同步練習(xí)冊(cè)答案