23. 查看更多

 

題目列表(包括答案和解析)

(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點y軸上,,B點坐標為(4,0).點是邊上一點,且.點分別從、同時出發(fā),以1厘米/秒的速度分別沿、向點運動(當點F運動到點B時,點E隨之停止運動),EM、CD的延長線交于點P,F(xiàn)PAD于點Q.⊙E半徑為,設運動時間為秒。

(1)求直線BC的解析式。

(2)當為何值時,?

(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點的坐標。如果不相切,說明理由。

 

查看答案和解析>>

(本題12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉。

(1)當三角板旋轉到圖1的位置時,猜想DE與BF的數(shù)量關系,并加以證明。

(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。

(3)當三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長。

 

 

 

 

 

查看答案和解析>>

(本題12分)某商場購進一批單價為5元的日用商品.如果以單價7元銷售,每天可售出160件.根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高1元,銷售量每天就相應減少20件.設這種商品的銷售單價為x元,商品每天銷售這種商品所獲得的利潤為y元.

(1)給定x的一些值,請計算y的一些值.

x

7

8

9

10

11

y

 

 

 

 

 

(2)求y與x之間的函數(shù)關系式,并探索:當商品的銷售單價定為多少元時,該商店銷售這種商品獲得的利潤最大?這時每天銷售的商品是多少件?

 

查看答案和解析>>

(本題12分)如圖二次函數(shù)的圖象經(jīng)過兩點,

且交軸于點.

(1)試確定、的值;

(2)過點軸交拋物線于點D,點為此拋物線的頂點,試確定 的形狀.

 

查看答案和解析>>

(本題12分)如圖,已知點A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.

(1)求此反比例函數(shù)的解析式和點B的坐標;

(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

 

查看答案和解析>>

 

一、選擇題(本題共10小題,每小題4分,共40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

A

A

D

B

A

C

B

二、填空題(本題共6小題,每小題5分,共30分)

11.             12.            13.

14.           15.              16.

三、解答題(本題有8小題,共80分)

17.(本題8分)

(1)原式

(2)解:得:,,

代入①得:

18.(本題8分)

(1)證明:,

(2)答案不惟一,如:,,等.

19.(本題8分)

解:(1)方法一:列表得

 

A

B

C

D

A

 

(A,B)

(A,C)

(A,D)

B

(B,A)

 

(B,C)

(B,D)

C

(C,A)

(C,B)

 

(C,D)

D

(D,A)

(D,B)

(D,C)

 

方法二:畫樹狀圖

(2)獲獎勵的概率:

20.(本題8分)

(1)

(2),

21.(本題10分)

解:(1)的切線,,

(2),

(3),,,

,

22.(本題12分)

解:(1);40;

(2)人均進球數(shù)

(3)設參加訓練前的人均進球數(shù)為個,由題意得:

,解得:

答:參加訓練前的人均進球數(shù)為4個.

23.(本題12分)

(1)

(2)由題意得:

,,(m).

(3),,

長為,則,解得:(m),即(m).

同理,解得(m),

24.(本題14分)

解:(1)直線的解析式為:

(2)方法一,,,

,

是等邊三角形,,

,

方法二,如圖1,過分別作軸于,軸于,

可求得,

,

當點與點重合時,

,

(3)①當時,見圖2.

于點,

重疊部分為直角梯形,

,

,

,

,

的增大而增大,

時,

②當時,見圖3.

于點

于點,于點,

重疊部分為五邊形

方法一,作,

,

方法二,由題意可得,,

再計算

,

時,有最大值,

③當時,,即重合,

于點,于點,重疊部

分為等腰梯形,見圖4.

,

綜上所述:當時,;

時,;

時,

,

的最大值是

 


同步練習冊答案