24. 查看更多

 

題目列表(包括答案和解析)

(本題14分)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn).

(1)求正比例函數(shù)和反比例函數(shù)的解析式;

(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn),求的值和這個(gè)一次函數(shù)的解析式;

(3)第(2)問中的一次函數(shù)的圖象與軸、軸分別交于C、D,求過A、B、D三點(diǎn)的二次函數(shù)的解析式;

(4)在第(3)問的條件下,二次函數(shù)的圖象上是否存在點(diǎn)E,使的面積的面積S滿足:?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

(本題14分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過、三點(diǎn).

⑴求拋物線的解析式;

⑵若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;

⑶若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

 

查看答案和解析>>

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求AD的長;

(2)設(shè)CP=x,△PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式, 并求自變量的取值范圍;

(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請(qǐng)找出點(diǎn)M,并求出BM的長;不存在,請(qǐng)說明理由.

 

 

 


      

 

 

 

 

 

查看答案和解析>>

(本題14分)如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求AD的長;

(2)設(shè)CP=x,△PDQ的面積為y,求y關(guān)于x的函數(shù)表達(dá)式, 并求自變量的取值范圍;

(3)探究:在BC邊上是否存在點(diǎn)M使得四邊形PDQM是菱形?若存在,請(qǐng)找出點(diǎn)M,并求出BM的長;不存在,請(qǐng)說明理由.

 

 

 

      

 

 

 

 

 

查看答案和解析>>

(本題14分)

如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P軸的垂線,垂足為Dm,0),并與直線OA交于點(diǎn)C

1.⑴ 求出二次函數(shù)的解析式;

2.⑵ 當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值.

3.⑶ 當(dāng)時(shí),探索是否存在點(diǎn),使得為等腰三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說明理由.

 

查看答案和解析>>

 

一、選擇題(本題共10小題,每小題4分,共40分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

A

A

D

B

A

C

B

二、填空題(本題共6小題,每小題5分,共30分)

11.             12.            13.

14.           15.              16.

三、解答題(本題有8小題,共80分)

17.(本題8分)

(1)原式

(2)解:得:,,

代入①得:,

18.(本題8分)

(1)證明:,

(2)答案不惟一,如:,等.

19.(本題8分)

解:(1)方法一:列表得

 

A

B

C

D

A

 

(A,B)

(A,C)

(A,D)

B

(B,A)

 

(B,C)

(B,D)

C

(C,A)

(C,B)

 

(C,D)

D

(D,A)

(D,B)

(D,C)

 

方法二:畫樹狀圖

(2)獲獎(jiǎng)勵(lì)的概率:

20.(本題8分)

(1)

(2),

21.(本題10分)

解:(1)的切線,,

(2),,

(3),,

,

22.(本題12分)

解:(1);40;

(2)人均進(jìn)球數(shù)

(3)設(shè)參加訓(xùn)練前的人均進(jìn)球數(shù)為個(gè),由題意得:

,解得:

答:參加訓(xùn)練前的人均進(jìn)球數(shù)為4個(gè).

23.(本題12分)

(1)

(2)由題意得:,

,,(m).

(3),,

設(shè)長為,則,解得:(m),即(m).

同理,解得(m),

24.(本題14分)

解:(1)直線的解析式為:

(2)方法一,,

,,

是等邊三角形,,

,

方法二,如圖1,過分別作軸于,軸于,

可求得,

,

,

當(dāng)點(diǎn)與點(diǎn)重合時(shí),

,

,

(3)①當(dāng)時(shí),見圖2.

設(shè)于點(diǎn),

重疊部分為直角梯形,

,

,

,

,

,

的增大而增大,

當(dāng)時(shí),

②當(dāng)時(shí),見圖3.

設(shè)于點(diǎn),

于點(diǎn)于點(diǎn),

重疊部分為五邊形

方法一,作,,

,

,

方法二,由題意可得,,,

再計(jì)算

,

當(dāng)時(shí),有最大值,

③當(dāng)時(shí),,即重合,

設(shè)于點(diǎn),于點(diǎn),重疊部

分為等腰梯形,見圖4.

,

綜上所述:當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),

,

的最大值是

 


同步練習(xí)冊(cè)答案