結(jié)論是∠PAC =∠APB +∠PBD . 選擇(a) 證明:如圖9-4.連接PA.連接PB交AC于M ∵ AC∥BD ,∴ ∠PMC =∠PBD .又∵∠PMC =∠PAM +∠APM ,∴ ∠PBD =∠PAC +∠APB . 選擇(b) 證明:如圖9-5 查看更多

 

題目列表(包括答案和解析)

27、如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分,當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角。(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論,選擇其中一種結(jié)論加以證明。

查看答案和解析>>

如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

如圖,直線ACBD,連結(jié)AB,直線AC,BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連結(jié)PA、PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是)

(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=PAC+PBD;

(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=PAC+PBD是否成立(直接回答成立或不成立)?

(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

如圖,直線AC∥BD,連結(jié)AB,直線AC,BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連結(jié)PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角.)

(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD;

(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?

(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案