交BC于點(diǎn).那么在軸上是否存在點(diǎn).使得∆PQR為等腰直角三角形?若存 在.求出點(diǎn)R的坐標(biāo),若不存在.請(qǐng)說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=
13
時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=數(shù)學(xué)公式時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊(cè)答案