題目列表(包括答案和解析)
已知函數(shù).
(Ⅰ)若值點(diǎn),求a的值;
(Ⅱ)求證:當(dāng)0<a≤2時(shí),f(x)在上是增函數(shù);
(Ⅲ)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)m的取值范圍.
已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1, 關(guān)于x的方程:
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得.如我們所學(xué)過的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)
已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當(dāng)且僅當(dāng)0<x<1時(shí)f(x)<0,且對(duì)任意x、y∈(-1,1)都有f(x)+f(y)=f(),試證明:w.w.w.k.s.5.u.c.o.m
(1)f(x)為奇函數(shù);(2)f(x)在(-1,1)上單調(diào)遞減.已知函數(shù),.
(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程有唯一解,求實(shí)數(shù)的值.
【解析】第一問,
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時(shí),在上均為增函數(shù)
(Ⅱ)中方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個(gè)極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時(shí),在上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個(gè)極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解
已知y=x(x-1)(x+1)的圖像如圖所示,今考慮f(x)=x(x-1)(x+1)+0.01,對(duì)于方程式f(x)=0根的情況,以下說法正確的是________.(填上正確的序號(hào))
①有三個(gè)實(shí)根;
②當(dāng)x<-1時(shí),恰有一實(shí)根;
③當(dāng)-1<x<0時(shí),恰有一實(shí)根;
④當(dāng)0<x<1時(shí),恰有一實(shí)根;
⑤當(dāng)x>1時(shí),恰有一實(shí)根.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com