[解析]由得a1=4, 則a10=a1+9d=4+9d=10.所以.[答案]D. 查看更多

 

題目列表(包括答案和解析)

(天津卷理12)一個(gè)正方體的各定點(diǎn)均在同一球的球面上,若該球的體積為,則該正方體的表面積為                    .

解析:由,所以,表面積為.

查看答案和解析>>

(天津卷理12)一個(gè)正方體的各定點(diǎn)均在同一球的球面上,若該球的體積為,則該正方體的表面積為                    .

解析:由,所以,表面積為.

查看答案和解析>>

設(shè)拋物線>0)的焦點(diǎn)為,準(zhǔn)線為上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點(diǎn)在同一條直線上,直線平行,且只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點(diǎn)為E,圓F的半徑為,

則|FE|==,E是BD的中點(diǎn),

(Ⅰ) ∵,∴=,|BD|=

設(shè)A(,),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點(diǎn)在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-

∴直線的方程為:,∴原點(diǎn)到直線的距離=

設(shè)直線的方程為:,代入得,,

只有一個(gè)公共點(diǎn), ∴=,∴

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

∴坐標(biāo)原點(diǎn)到,距離的比值為3.

解析2由對(duì)稱(chēng)性設(shè),則

      點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)得:

     得:,直線

     切點(diǎn)

     直線

坐標(biāo)原點(diǎn)到距離的比值為

 

查看答案和解析>>

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15,則數(shù)列的前100項(xiàng)和為

(A)   (B)    (C)   (D)

【解析】由,得,所以,所以,又,選A.

 

查看答案和解析>>

數(shù)列{an}滿足an+1+(-1)n an =2n-1,則{an}的前60項(xiàng)和為

(A)3690         (B)3660         (C)1845            (D)1830

【解析】由得,

,

,也有,兩式相加得,設(shè)為整數(shù),

,

于是

 

查看答案和解析>>


同步練習(xí)冊(cè)答案