上式對顯然成立. 查看更多

 

題目列表(包括答案和解析)

某學(xué)生在證明等差數(shù)列前n項(xiàng)和公式時,證法如下:

(1)當(dāng)n=1時,S1=a1顯然成立.

(2)假設(shè)n=k時,公式成立,即

Sk=ka1

當(dāng)n=k+1時,

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1d

=(k+1)a1d.

∴n=k+1時公式成立.

∴由(1)(2)可知對n∈N+,公式成立.

以上證明錯誤的是

[  ]
A.

當(dāng)n取第一個值1時,證明不對

B.

歸納假設(shè)寫法不對

C.

從n=k到n=k+1的推理中未用歸納假設(shè)

D.

從n=k到n=k+1的推理有錯誤

查看答案和解析>>

考察等式:
     (*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同學(xué)用概率論方法證明等式(*)如下:設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品,現(xiàn)從中隨機(jī)取出r件產(chǎn)品,記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,…,r。顯然A0,A1,…,Ar為互斥事件,且(必然事件),因此,
所以,,即等式(*)成立。
對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.
現(xiàn)有以下四個判斷:①等式(*)成立;②等式(*)不成立;③證明正確;④證明不正確,試寫出所有正確判斷的序號(    )。

查看答案和解析>>

考察等式:(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,2,…,r.
顯然A,A1,…,Ar為互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=
所以,即等式(*)成立.
對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號   

查看答案和解析>>

考察等式:Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr(*)其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,記事件Ak={取到的件產(chǎn)品中恰有件次品},則數(shù)學(xué)公式,k=0,1,…,r.顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=數(shù)學(xué)公式,所以Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr,即等式(*)成立.對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個判斷:
①等式(*)成立;②等式(*)不成立③證明正確;④證明不正確
試寫出所有正確判斷的序號________.

查看答案和解析>>

考察等式:
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
Ckm
Cr-kn-m
Crn
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
Crn

所以
C0m
Crn-m
+
C1m
Cr-1n-m
+…+
Crm
C0n-m
=
Crn
,即等式(*)成立.
對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號______.

查看答案和解析>>


同步練習(xí)冊答案