(3)由題意得,圓M的圓心是點(diǎn)(0,2),半徑為2.當(dāng)m=4時(shí),直線AK的方程為x=4,此時(shí),直線AK與圓M相離. 查看更多

 

題目列表(包括答案和解析)

在復(fù)平面內(nèi), 是原點(diǎn),向量對(duì)應(yīng)的復(fù)數(shù)是=2+i。

(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量對(duì)應(yīng)的復(fù)數(shù);

(Ⅱ)復(fù)數(shù),對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>

設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對(duì)如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

所以

(2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

于是,

    

所以,當(dāng),且時(shí),取得最大值1。

(3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設(shè),

得定義知,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

所以

     

     

所以,

對(duì)數(shù)表

1

1

1

-1

-1

 

綜上,對(duì)于所有的,的最大值為

 

查看答案和解析>>

已知平面α截一球面得圓M,過圓心M且與α成
π
3
角的平面β截該球面得圓N若圓M、圓N面積分別為4π、13π,則球面面積為( 。

查看答案和解析>>

若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

【解析】第一問中,利用定義,判定由題意得,由,所以

第二問中, 由題意得方程有兩實(shí)根

設(shè)所以關(guān)于m的方程有兩實(shí)根,

即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn),從而得到t的范圍。

解(I)由題意得,由,所以     (6分)

(II)由題意得方程有兩實(shí)根

設(shè)所以關(guān)于m的方程有兩實(shí)根,

即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn)。

 

查看答案和解析>>

已知圓M經(jīng)過三點(diǎn)A(2,2),B(2,4),C(3,3),從圓M外一點(diǎn)P(a,b)向該圓引切線PT,T為切點(diǎn),且|PT|=|PO|(O為坐標(biāo)原點(diǎn)).
(1)求圓M的方程;
(2)試判斷點(diǎn)P是否總在某一定直線上,若是,求出該直線方程;若不是,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案