15.(理)如果P1.P2.-.P8是拋物線上的點(diǎn).它們的橫坐標(biāo)依次為.F是拋物線的焦點(diǎn).若= . 查看更多

 

題目列表(包括答案和解析)

如果P1,P2,…,P9是拋物線y2=4x上的點(diǎn),它們的橫坐標(biāo)x1,x2,…,x9依次成等差數(shù)列,F(xiàn)是拋物線的焦點(diǎn),若x1+x9=2,則|P1F|+|P2F|+…+|P9F|=
18
18

查看答案和解析>>

(2012•普陀區(qū)一模)設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫(xiě)出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足|
FP1
|+|
FP2
|+|
FP3
|=6
;
(2)當(dāng)n≥3時(shí),若
FP1
+
FP2
+…+
FPn
=
0
,求證:|
FP1
|+|
FP2
|+…+|
FPn
|=np
;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,則
FP1
+
FP2
+…+
FPN
=
0
”開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
1.試構(gòu)造一個(gè)說(shuō)明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫(xiě)出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足
(2)當(dāng)n≥3時(shí),若,求證:
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若,則”開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
1.試構(gòu)造一個(gè)說(shuō)明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫(xiě)出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足數(shù)學(xué)公式
(2)當(dāng)n≥3時(shí),若數(shù)學(xué)公式,求證:數(shù)學(xué)公式;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若數(shù)學(xué)公式,則數(shù)學(xué)公式”開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
1.試構(gòu)造一個(gè)說(shuō)明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

(2013•牡丹江一模)已知P1、P2、…、P2013是拋物線y2=4x上的點(diǎn),它們的橫坐標(biāo)依次為x1、x2、…、x2013,F(xiàn)是拋物線的焦點(diǎn),若x1+x2+…+x2013=10,則|P1F|+|P2F|+…|P2013F|=
2023
2023

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因?yàn)?sub>

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當(dāng)恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當(dāng)……10分

    要使當(dāng)

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

  • 解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1

    以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

       (2)是平面PAB的一個(gè)法向量,

       ………………5分

       ………………6分

      ………………8分

       (3)設(shè)P點(diǎn)坐標(biāo)為(),則

    設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

        令

        同理可求得平面PA1B1的一個(gè)法向量   ………………10分

        要使平面PAB⊥平面PA1B1,只需

          ………………11分

        解得: …………12分

    21.(理)解:(1)由條件得

       

       (2)①設(shè)直線m ……5分

       

        ②不妨設(shè)M,N的坐標(biāo)分別為

    …………………8分

    因直線m的斜率不為零,故

       (文)解:(1)設(shè)  …………2分

       

        故所求雙曲線方程為:

       (2)設(shè),

       

        由焦點(diǎn)半徑,  ………………8分

       

    22.(1)證明:

        所以在[0,1]上為增函數(shù),   ………………3分

       (2)解:由

       

       (3)解:由(1)與(2)得 …………9分

        設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

           ………………10分

       

        ,   ………………11分

        當(dāng),   ………………12分

        當(dāng)    ………………13分

        所在存在正整數(shù)

        都有成立.   ………………14分

     

     

     

     


    同步練習(xí)冊(cè)答案