(2)求函數(shù)的單調區(qū)間, 查看更多

 

題目列表(包括答案和解析)

 (I)求函數(shù)的單調區(qū)間;

  (Ⅱ)函數(shù)在區(qū)間[1,2]上是否有零點,若有,求出零點,若沒有,請說明理由;

  (Ⅲ)若任意的∈(1,2)且,證明:(注:

查看答案和解析>>

求函數(shù)的單調區(qū)間,必須先求函數(shù)的定義域.

討論函數(shù)y=f[(x)]的單調性時要注意兩點:

(1)若u=(x),y=f(u)在所討論的區(qū)間上都是增函數(shù)或都是減函數(shù),則y=f[(x)]為________;

(2)若u=(x),y=f(u)在所討論的區(qū)間上一個是增函數(shù),另一個是減函數(shù),則y=f[(x)]為.________

查看答案和解析>>

(1)求函數(shù)的單調區(qū)間;

(2)比較tan 1、tan 2、tan 3的大。

查看答案和解析>>

(1)求函數(shù)的單調區(qū)間;

(2)比較tan 1、tan 2、tan 3的大。

查看答案和解析>>

  已知

(I)求函數(shù)的單調區(qū)間;

(Ⅱ)求函數(shù)上的最小值;

(Ⅲ)對一切的恒成立,求實數(shù)a的取值范圍

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當恒成立,

    必須且只須, …………8分

   

     則   ………………9分

    ②當……10分

    要使當

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求。…………1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設B1到平面PAB的距離為h,則由

  ………………8分

   (3)設平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

<li id="xjpky"></li>

解法二:(1)取B1C1的中點O,則A1O⊥B1C1,

以O為坐標原點,建立空間直角坐標系如圖,

   (2)是平面PAB的一個法向量,

   ………………5分

   ………………6分

  ………………8分

   (3)設P點坐標為(),則

是平面PAB的一個法向量,與(2)同理有

    令

    同理可求得平面PA1B1的一個法向量   ………………10分

    要使平面PAB⊥平面PA1B1,只需

      ………………11分

    解得: …………12分

21.(理)解:(1)由條件得

   

   (2)①設直線m ……5分

   

    ②不妨設M,N的坐標分別為

…………………8分

因直線m的斜率不為零,故

   (文)解:(1)設  …………2分

   

    故所求雙曲線方程為:

   (2)設,

   

    由焦點半徑,  ………………8分

   

22.(1)證明:

    所以在[0,1]上為增函數(shù),   ………………3分

   (2)解:由

   

   (3)解:由(1)與(2)得 …………9分

    設存在正整數(shù)k,使得對于任意的正整數(shù)n,都有成立,

       ………………10分

   

    ,   ………………11分

    當,   ………………12分

    當    ………………13分

    所在存在正整數(shù)

    都有成立.   ………………14分

 

 

 

 


同步練習冊答案