17 查看更多

 

題目列表(包括答案和解析)

17世紀,著名物理學家
伽利略
伽利略
采用了
理想實驗
理想實驗
的科學方法推斷出:力不是維持物體運動的原因.

查看答案和解析>>

17世紀,意大利物理學家伽利略根據(jù)實驗指出:在水平面上運動的物體之所以會停下來,是因為受到摩擦阻力的緣故.這里的實驗是指“伽利略斜面實驗”,關于該實驗,你認為下列陳述正確的是(  )

查看答案和解析>>

17世紀,意大利物理學家伽利略根據(jù)“伽利略斜面實驗”指出:在水平面上運動的物體之所以會停下來,是因為受到摩擦阻力的緣故,你認為下列陳述正確的是(  )

查看答案和解析>>

17世紀英國物理學家胡克發(fā)現(xiàn):在彈性限度內(nèi),彈簧的形變量與彈力成正比,這就是著名的胡克定律,受此啟發(fā),一組同學研究“金屬線材伸長量與拉力的關系”的探究過程如下:
A.有同學認為:橫截面為圓形的金屬絲或金屬桿在彈性限度內(nèi),其伸長量與拉力成正比,與截面半徑成反比.
B.他們準備選用一些“由同種材料制成的不同長度、不同半徑的線材”作為研究對象,用測距儀、傳感器等儀器測量線材的伸長量隨拉力變化的規(guī)律,以驗證假設.
C.通過實驗取得如下數(shù)據(jù):
長度
          力

         長
直徑
250N 500N 750N 1000N
1m 2.52mm 0.4mm 0.8mm 1.2mm 1.6mm
2m 2.52mm 0.8mm 1.6mm 2.4mm 3.2mm
1m 3.57mm 0.2mm 0.4mm 0.6mm 0.8mm
D.同學們對實驗數(shù)據(jù)進行分析、歸納后,對他們的假設進行了補充、完善.
(l)上述科學探究活動中,屬于“制定計劃”和“搜集證據(jù)”的環(huán)節(jié)分別是
B
B
、
C
C

(2)請根據(jù)上述過程分析他們的假設是否全部正確?
他們的假設不是全部正確
他們的假設不是全部正確
.若有錯誤或不足,請給予修正.
在彈性限度內(nèi),金屬絲(桿)的伸長量與拉力成正比,與截面半徑的平方成反比,還與金屬絲(桿)的長度成正比
在彈性限度內(nèi),金屬絲(桿)的伸長量與拉力成正比,與截面半徑的平方成反比,還與金屬絲(桿)的長度成正比

查看答案和解析>>

17世紀初,開普勒提出的行星運動定律指出了行星運動的規(guī)律后,人們迫切想了解這一規(guī)律的本質,之后很多的學者提出各種觀點,最終由牛頓的萬用引力定律揭開了天體運動的神秘面紗.牛頓首先從太陽對行星的引力出發(fā),憑借其運動三定律猜測行星之所以圍繞太陽運轉是因為其受到了太陽的引力,并導出了引力公式.牛頓的思想進一步解放,指出這一引力與使月球圍繞地球運動的力、使蘋果落地的力應遵循相同的規(guī)律,并給出了著名的“月-地檢驗”,為萬有引力定律的得出提供了強有力的依據(jù).“月-地檢驗”的基本思路可設置為以下兩個問題,已知地球半徑為6400km,月地距離約為地球半徑的60倍,請再結合下面給出的已知量計算:(結果均保留三位有效數(shù)字)
①已知月球的公轉周期為27.3天,據(jù)此求月球的向心加速度?
②已知地球表面的重力加速度為9.8m/s2,試據(jù)此求月球的向心加速度?

查看答案和解析>>

一、二、選擇題

題號

1

2

3

4

5

6

7

8

9

答案

C

B

C

A

D

CD

BC

AC

ABD

三、簡答題

10.每小題2分,計8分。

(1)C;

(2);

(3)m<<M;

(4)如圖所示。

11.(3)4分,其余每小題2分,計10分。

(1)保護電源、電表,防止短路;

(2)作圖;

(3)1.5,     1.0    (3.0不正確)

(4)30,5

12A.(每小題4分,計12分)

(1)CD

(2)AB

(3)1.2×10-5Pa;內(nèi)能增加了1.8×105J

12B.(每小題4分,計12分)

(1)①1:3    ②4:1

(2)CD

(3)(3)發(fā)生;450

12C.(每小題4分,計12分)

(1)C

(2)B

(3)2

四、全題共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟.只寫出最后答案的不能得分.有數(shù)值計算的題.答案中必須明確寫出數(shù)值和單位

13.解:(1)在D點,速度為vD,

mg = mvD2/R

∴v=2m/s

由A運動到D點,機械能守恒

mg(h-2R)= mvD2/2

∴h=1m

(2)由A運動到C點,機械能守恒

mgh=mvC2/2

在C點,由向心力公式,得

FN-mg=mvC2/R

∴FN=12N

(3)設撞到斜面上E點離B點的距離為x,飛行時間為t,由位移公式,得

Rsin530+xcos530   = vDt

R+Rcos530-xsin530 = gt2/2

由上面兩式,得

t = s

評分:(1)(2)各4分,(3)中列式4分,結果4分。

14.解:(1)粒子進入磁場后做圓周運動的軌道半徑為r

(2)O、P連線與x軸之間的夾角為45°,由運動的對稱性,粒子經(jīng)兩個四分之一圓弧到達P點,設圓周運動周期為T0,由T0=,得

               T0=                 ∴T= =

(3)設兩段圓弧的圓心OO的連線與y軸夾角為θ,P點的縱坐標為y,圓心O到y(tǒng)軸之間的距離為x,則由幾何關系,得

y=2r+2rcosθ

sinθ=

保證粒子在第一象限內(nèi)運動,

x≥r

當θ=300時,y取最大,

ym=(2+)

評分標準:(1)4分(2)4分,(3中各式2分,計8分。

 

 

15.解:(1)拉力F作用過程中,在時間△t內(nèi),磁通量為△Φ,通過電阻R上電量q

,

,

 

(2)撤去F后金屬棒滑行過程中動能轉化為電能

           

由能量守恒定律,得

   

          

(3)勻速運動時最大拉力與安培力平衡

    

 由圖像面積,可得拉力做功為  

   

由動能定理,得           

               

電阻R上產(chǎn)生的熱量(

                          

評分標準:(1)各式1分,計4分(2)各式2分,計6分,(3中各式2分,計6分。

 

 

 

 

 

 

 


同步練習冊答案