已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

  • <s id="ztnrm"></s>

    <kbd id="ztnrm"><meter id="ztnrm"></meter></kbd><font id="ztnrm"></font>

    ∴PO⊥AC,

    又∵面PAC⊥面ABC,PO面PAC,

    ∴PO⊥面ABC,……………………2分

    連結OD,則OD//BC,

    ∴DO⊥AC,

    由三垂線定理知AC⊥PD.……………………4分

    (2)連接OB,過E作EF⊥OB于F,

    又∵面POB⊥面ABC,

    ∴EF⊥面ABC,

    過F作FG⊥AC,連接EG,

    由三垂線定理知EG⊥AC,

    ∴∠EGF即為二面角E―AC―B的平面角…………6分

    ……………………9分

    (3)由題意知

    .…………………………12分

    20.(本小題滿分12分)

    解:(1)設“生產(chǎn)一臺儀器合格”為事件A,則

    ……………………2分

    (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

    所以的分布列為:

    3

    2

    1

    0

    P

     

    的數(shù)學期望

    …………9分

    (3)該廠每生產(chǎn)一件儀器合格率為,

    ∴每臺期望盈利為(萬元)

    ∴該廠每月期望盈利額為萬元……………………12分

    21.(本小題滿分12分)

    解:(1)設

    ,

    …………………………3分

    ,這就是軌跡E的方程.……………………4分

    (2)當時,軌跡為橢圓,方程為①…………5分

    設直線PD的方程為

    代入①,并整理,得

       ②

    由題意,必有,故方程②有兩上不等實根.

    設點

    由②知,………………7分

    直線QF的方程為

    時,令,

    代入

    整理得

    再將代入,

    計算,得x=1,即直線QF過定點(1,0)

    當k=0時,(1,0)點……………………12分

    22.(本小題滿分14分)

    解:(1)

    由題知,即a-1=0,∴a=1.……………………………2分

    x≥0,∴≥0,≥0,

    又∵>0,∴x≥0時,≥0,

    上是增函數(shù).……………………4分

    (Ⅱ)由(Ⅰ)知

    下面用數(shù)學歸納法證明>0.

    ①當n=1時,=1>0成立;

    ②假設當時,>0,

    上是增函數(shù),

    >0成立,

    綜上當時,>0.……………………………………6分

    >0,1+>1,∴>0,

    >0,∴,…………………………………8分

    =1,∴≤1,綜上,0<≤1.……………………………9分

    (3)∵0<≤1,

    ,

    ,

    ,

    >0,………………………………………11分

    =??……

      =n.……………………………12分

    ∴Sn++…+

    +()2+…+()n

    ==1.

    ∴Sn<1.………………………………………………………………14分

     

     

     


    同步練習冊答案