對于定義在R上的函數(shù).有下述命題: 查看更多

 

題目列表(包括答案和解析)

對于定義在R上的函數(shù),有下述命題:

 ①若是奇函數(shù),則的圖象關于點A(1,0)對稱;

 ②若函數(shù)的圖象關于直線對稱,則為偶函數(shù);

   ③函數(shù)圖象關于原點對稱;

 ④函數(shù)的圖象關于直線對稱.

 其中正確命題的序號是                

 

查看答案和解析>>

對于定義在R上的函數(shù),有下述命題:

①若是奇函數(shù),則的圖象關于點A(1,0)對稱

②若函數(shù)的圖象關于直線對稱,則為偶函數(shù)

③若對,有2是的一個周期為

④函數(shù)的圖象關于直線對稱.

其中正確的命題是___      .(寫出所有正確命題的序號)

 

查看答案和解析>>

對于定義在R上的函數(shù),有下述命題:

①若是奇函數(shù),則的圖象關于點A(1,0)對稱

②若函數(shù)的圖象關于直線對稱,則為偶函數(shù)

③若對,有的周期為2

④函數(shù)的圖象關于直線對稱.

其中正確命題的個數(shù)是(      )

A . 1   B  . 2     C . 3    D . 4

 

查看答案和解析>>

對于定義在R上的函數(shù),有下述命題:

  ①若是奇函數(shù),則的圖象關于點A(1,0)對稱;

  ②若函數(shù)的圖象關于直線對稱,則為偶函數(shù);

  ③若對,有的周期為2;

   ④函數(shù)的圖象關于直線對稱。

其中正確命題的序號是                

 

 

 

查看答案和解析>>

對于定義在R上的函數(shù),有下述命題:
①若是奇函數(shù),則的圖象關于點A(1,0)對稱
②若函數(shù)的圖象關于直線對稱,則為偶函數(shù)
③若對,有2是的一個周期為
④函數(shù)的圖象關于直線對稱.
其中正確的命題是___     .(寫出所有正確命題的序號)

查看答案和解析>>

一、選擇題   A D B A C      B A D A C  B  B

二、填空題

13..    14.   15. .16.①②③④

三、解答題

17.(1) =

=

==

==.

的最小正周期

(2) ∵,  ∴.

∴當,即=時,有最大值;

,即=時,有最小值-1.

 

18. (1)連結,則的中點,

在△中,

平面,平面,

∥平面 

   (2) 因為平面,平面,

,

,所以,⊥平面

∴四邊形 是矩形,

且側面⊥平面

的中點,,

平面.

所以,多面體的體積

19.解:(Ⅰ)依題意,甲答對試題數(shù)的概率分布如下:

0

1

2

3

 

 

 

甲答對試題數(shù)的數(shù)學期望:

 

(Ⅱ)設甲、乙兩人考試合格的事件分別為

        

甲、乙兩人考試均不合格的概率為:

∴甲、乙兩人至少一個合格的概率為

20.(1)

,于是

為首相和公差均為1的等差數(shù)列.

, 得, 

(2),

,

兩式相減,得,

解出

21. 因                  

而函數(shù)處取得極值2             

所以                     

所以   為所求                       

文本框:  文本框:  (2)由(1)知

可知,的單調增區(qū)間是

所以,       

所以當時,函數(shù)在區(qū)間上單調遞增  

(3)由條件知,過的圖形上一點的切線的斜率為:

 

,則,  

此時 ,

根據(jù)二次函數(shù)的圖象性質知:

時,                

時,

所以,直線的斜率的取值范圍是

22. 解:(1)∵點A在圓,

      

       由橢圓的定義知:|AF1|+|AF2|=2a,

        

   (2)∵函數(shù)

  

           點F1(-1,0),F2(1,0), 

           ①若,

       ∴

       ②若ABx軸不垂直,設直線AB的斜率為k,則AB的方程為y=kx+1)

       由…………(*)

       方程(*)有兩個不同的實根.

       設點Ax1,y1),Bx2,y2),則x1x2是方程(*)的兩個根

        

      

      

        

      

       由①②知


同步練習冊答案