題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長|AB|的取值范圍.
Ⅰ選擇題
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非選擇題
13. 14. 15. 16. (2) (3)
17. 解: (4分)
(1)增區(qū)間為: , 減區(qū)間為: (8分)
(2) (12分)
18.解:因骰子是均勻的,所以骰子各面朝下的可能性相等,設(shè)其中一枚骰子朝下的面上的數(shù)字為x,另一枚骰子朝下的面上的數(shù)字為y,則的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
從表中可得: (8分)
(2)p(=奇數(shù))
………………12分
19.解:(1)
∴ (2分)
又 恒成立 ∴
∴ ∴
∴ (6分)
(2)
∴
∴ ①)當(dāng) 時(shí), 解集為
②當(dāng) 時(shí),解集為
③當(dāng) 時(shí),解集為 (12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如圖所示空間直角坐標(biāo)系Oxyz
(1)
∴
∴ ∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD與PC夾角為所求
∴ 所求二面角E-AD-B的大小為 (8分)
(3)由(2)得:四邊形ADFE為直角梯形,且 EF=1,DF=,AD=2
∴
∴ 所求部分體積 (12分)
21.解:(1)
為等比數(shù)列 (4分)
(2) (6分)
(3) (7分)
(10分)
∴M≥6 (12分)
22.解:(1)直線AB的方程為:與拋物線的切點(diǎn)設(shè)為T且
∴
∴拋物線c的方程為: (3分)
⑵設(shè)直線l的方程為: 易如:
設(shè),
①M(fèi)為AN中點(diǎn)
由 (Ⅰ)、(Ⅱ)聯(lián)解,得 代入(Ⅱ)
4
∴直線l的方程為 : (7分)
②
(9分)
FM為∠NFA的平分線
且 (11分)
又
(14分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com