① ---------- 3分由直線l與橢圓相交于兩個不同的點得 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點;橢圓E的中心在原點,焦點在x軸上,點F是它的一個頂點,且其離心率e=
3
2

(1)求橢圓E的方程;
(2)經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,切線l1與l2相交于點M.證明:AB⊥MF;
(3)橢圓E上是否存在一點M′,經(jīng)過點M′作拋物線C的兩條切線M′A′、M′B(A′、B′為切點),使得直線A′B′過點F?若存在,求出拋物線C與切線M′A′、M′B所圍成圖形的面積;若不存在,試說明理由.

查看答案和解析>>

已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點;橢圓E的中心在原點,焦點在x軸上,點F是它的一個頂點,且其離心率e=
(1)求橢圓E的方程;
(2)經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,切線l1與l2相交于點M.證明:AB⊥MF;
(3)橢圓E上是否存在一點M′,經(jīng)過點M′作拋物線C的兩條切線M′A′、M′B(A′、B′為切點),使得直線A′B′過點F?若存在,求出拋物線C與切線M′A′、M′B所圍成圖形的面積;若不存在,試說明理由.

查看答案和解析>>

已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點;橢圓E的中心在原點,焦點在x軸上,點F是它的一個頂點,且其離心率e=
(1)求橢圓E的方程;
(2)經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,切線l1與l2相交于點M.證明:AB⊥MF;
(3)橢圓E上是否存在一點M′,經(jīng)過點M′作拋物線C的兩條切線M′A′、M′B(A′、B′為切點),使得直線A′B′過點F?若存在,求出拋物線C與切線M′A′、M′B所圍成圖形的面積;若不存在,試說明理由.

查看答案和解析>>

已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點;橢圓E的中心在原點,焦點在x軸上,點F是它的一個頂點,且其離心率e=
(1)求橢圓E的方程;
(2)經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,切線l1與l2相交于點M.證明:AB⊥MF;
(3)橢圓E上是否存在一點M′,經(jīng)過點M′作拋物線C的兩條切線M′A′、M′B(A′、B′為切點),使得直線A′B′過點F?若存在,求出拋物線C與切線M′A′、M′B所圍成圖形的面積;若不存在,試說明理由.

查看答案和解析>>

已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點;橢圓E的中心在原點,焦點在x軸上,點F是它的一個頂點,且其離心率e=
(1)求橢圓E的方程;
(2)經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,切線l1與l2相交于點M.證明:AB⊥MF;
(3)橢圓E上是否存在一點M′,經(jīng)過點M′作拋物線C的兩條切線M′A′、M′B(A′、B′為切點),使得直線A′B′過點F?若存在,求出拋物線C與切線M′A′、M′B所圍成圖形的面積;若不存在,試說明理由.

查看答案和解析>>


同步練習冊答案