題目列表(包括答案和解析)
設(shè)甲,乙兩人每次投球命中的概率分別是,,且兩人各次投球是否命中相互之間沒有影響.
(Ⅰ)若兩人各投球1次,求兩人均沒有命中的概率;
(Ⅱ)若兩人各投球2次,求乙恰好比甲多命中1次的概率.
設(shè)甲、乙兩人每次投球命中的概率分別是,且兩人各次投球是否命中相互之間沒有
影響。
(Ⅰ)若兩人各投球1次,求兩人均沒有命中的概率;
(Ⅱ)若兩人各投球2次,求乙恰好比甲多命中1次的概率。
1 |
3 |
1 |
2 |
2 |
3 |
3 |
4 |
(本小題滿分12分)甲、乙兩人在罰球線投球命中的概率分別為和,假設(shè)兩人投球是否命中,相互之間沒有影響;每次投球是否命中,相互之間也沒有影響。
(1)甲、乙兩人在罰球線各投球一次,求兩人都沒有命中的概率;
(2)甲、乙兩人在罰球線各投球兩次,求甲投球命中的次數(shù)比乙投球命中的次數(shù)多的概率。
一、選擇題:本大題共8小題,每小題5分,共40分.
1.B 2.C 3.A 4.A 5.B 6.C 7.D 8.C
二、填空題:本大題共6小題,每小題5分,共30分.
12.24;81 13.1;45° 14.2 |x|
注:兩空的題目,第一個(gè)空2分,第二個(gè)空3分.
三、解答題:本大題共6小題,共80分.
15.(本小題滿分12分)
(Ⅰ)解:
∵函數(shù)f(x)=asinx+bcosx的圖象經(jīng)過點(diǎn),
∴ 2分 即 4分
解得a=1,b=-. 6分
(Ⅱ)解:
由(Ⅰ)得f(x)=sinx-cosx=2sin(). 8分
∵0≤x≤π, ∴- 9分
當(dāng)x-,即x=時(shí),sin取得最大值1. 11分
∴f(x)在[0,π]上的最大值為2,此時(shí)x=. 12分
16.(本小題滿分13分)
(Ⅰ)解:
記“甲投球命中”為事件A,“乙投球命中”為事件B,則A,B相互獨(dú)立,
且P(A)=,P(B)=.
那么兩人均沒有命中的概率P=P()=P()P()=. -5分
(Ⅱ)解:
記“乙恰好比甲多命中1次”為事件C,“乙恰好投球命中1次且甲恰好投球命中0次”為事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”為事件C2,則C=C1+C2,C1,C2為互斥事件.
, 8分
? 11分
P(C)=P(C1)+P(C2)=. 13分
17.(本小題滿分13分)
解法一:
|