(河北省正定中學(xué)高2008屆一模)P是內(nèi)的一點(diǎn)..則的面積與的面積之比為 查看更多

 

題目列表(包括答案和解析)

(08年正定中學(xué)一模)內(nèi)的一點(diǎn),,則的面積與的面積之比為

A.2                            B.3                            C.                          D.6

查看答案和解析>>

(2008•普陀區(qū)一模)一個(gè)圓柱形容器的軸截面尺寸如右圖所示,容器內(nèi)有一個(gè)實(shí)心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設(shè)球的密度大于水且操作過程中水量損失不計(jì)),則球取出后,容器中水面的高度為
25
3
25
3
cm.

查看答案和解析>>

(2008•崇明縣一模)已知圓錐的母線長l=15cm,高h(yuǎn)=12cm,則這個(gè)圓錐的側(cè)面積等于
135π
135π
cm2

查看答案和解析>>

(2008•上海一模)在統(tǒng)計(jì)學(xué)中,我們學(xué)習(xí)過方差的概念,其計(jì)算公式為
σ
2
 
=
1
N
[(x1)2+(x2)2+…+(xn)2]
,并且知道,其中μ=
1
N
(x1+x2+…+xn)
為x1、x2、…、xn的平均值.
類似地,現(xiàn)定義“絕對(duì)差”的概念如下:設(shè)有n個(gè)實(shí)數(shù)x1、x2、…、xn,稱函數(shù)g(x)=|x-x1|+|x-x2|+…+|x-xn|為此n個(gè)實(shí)數(shù)的絕對(duì)差.
(1)設(shè)有函數(shù)g(x)=|x+1|+|x-1|+|x-2|,試問當(dāng)x為何值時(shí),函數(shù)g(x)取到最小值,并求最小值;
(2)設(shè)有函數(shù)g(x)=|x-x1|+|x-x2|+…+|x-x2|,(x∈R,x1<x2<…<xn∈R),
試問:當(dāng)x為何值時(shí),函數(shù)g(x)取到最小值,并求最小值;
(3)若對(duì)各項(xiàng)絕對(duì)值前的系數(shù)進(jìn)行變化,試求函數(shù)f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;
(4)受(3)的啟發(fā),試對(duì)(2)作一個(gè)推廣,給出“加權(quán)絕對(duì)差”的定義,并討論該函數(shù)的最值(寫出結(jié)果即可).

查看答案和解析>>

(2008•鎮(zhèn)江一模)在復(fù)平面內(nèi),復(fù)數(shù)z=
4+3i2i
對(duì)應(yīng)的點(diǎn)位于第
4
4
象限.

查看答案和解析>>


同步練習(xí)冊(cè)答案