10.若直線y=ax-b經(jīng)過第一.二.四象限.則點P(a.b)在第 象限內(nèi). 查看更多

 

題目列表(包括答案和解析)

一、選擇題:

1、 C    2、B    3、B   4、 A     5、 C    6、B

二、填空題:

7.0<x≤1     8.a= -1    9.±1     10.三

11.13      12.10,  13.1    14.

15.10045

三、解答題:

16. 解:原式=2-―1+2 × +    …………………6分

            =2                           …………………8分

17. (1)證明:∵四邊形ABCD是平行四邊形 ∴∠ADC=∠ABC

       又  ∵DE,BF分別是∠ADC,∠ABC的平分線,

       ∴∠ABF=∠CDE.

又∵∠CDE=∠AED

       ∴∠ABF=∠AED,∴DE∥BF,∵DF∥BE

        ∴DEBF是平行四邊形,∴EF,BD互相平分;…………………4分

(2)由(1)知∠ADE=∠AED∵∠A=60°,

∴△ADE是等邊三角形

∴AE=DE=AD=6,又∵AE┱EB=2┱1,

∴EB=3∴四邊形DEBF的周長是18.               …………………9分

18.(1)2;2.                                            …………………3分.

(2)甲銀行抽查用戶數(shù)為:500+1000+2000+1000=4500(戶),

乙銀行抽查用戶數(shù)為:100+900+2200+1300=4500(戶).

所以甲銀行滿意度分數(shù)的平均值=

(500×0+1000×1+2000×2+1000×4)=2(分),

乙銀行滿意度分數(shù)的平均值=

(100×0+900×1+2200×2+1300×4)=(分).

答:甲、乙兩銀行用戶滿意度分數(shù)的平均值分別為2分、分.                                                   …………………7分

(3)因為乙銀行用戶滿意度分數(shù)的平均值較高(或較滿意和很滿意的人數(shù)較多),所以乙銀行的用戶滿意度較高.                           …………………9分.

19.(1)∵△CBE是由△ABD旋轉(zhuǎn)得到的,∴△ABD≌△CBE,

∴∠A=∠BCE=45°,∴∠DCE=∠DCB+∠BCE=90° …………………4分

(2)∵在等腰直角三角形ABC中,∵AB=4,∴AC=4

又∵AD┱DC=1┱3,∴AD=,DC=3,

由(1)知AD=CE且∠DCE=90°,

∴DE=DC+CE=2+18=20,∴DE=2     …………………9分

20.解:(1)田忌出馬順序為下、上、中時才能取勝.             …………………4分

(2)正確畫出樹狀圖(或列表)                          …………………8分

        <i id="ykzaa"></i>

        1. 田忌出馬順序

           

           

           

           

           

           

           

           

           

          ∴田忌獲勝的概率是.                          ……………………9分

          21.(1)連接PA則APD=90,∵AD=AD=2且AP=2-,∴PD=

          ∴α==,∴∠а=45°  …………………5分

          (2)連接OP,S陰影部分=S半圓-S弓形PD

          =π-(S扇形POD-S△POD)

          =π-(-××)

          =π+   …………………9分

           

          22.解:①設(shè)    ∴由

          ∵    ∴

          設(shè)又 ∴.

          ∴設(shè)比例函數(shù)解析式為 .                           …………………2分

              ②∵, ∴   ∴A(2,4)    OB=2, AB=4

          當∠AP1B=∠AOB時   △AOB≌△APB  

          ∴PB=OB=2   ∴P1(4,0)                                  …………………3分

          當∠AP2B=∠OAB時  △AOB∽△P2AB                       

          可以由    ∴    BP2=8   ∴P2(10,0).                                           …………………4分

          當P3在軸負半軸上時,且P3與P2關(guān)于點B對稱也滿足△AOB∽△P3BA

          由P2(10,0), B(2,0),

          ∴P3(-6,0).                                      …………………5分

             ③當拋物線經(jīng)過P1(4,0), O(0,0), A(2,4)時

          設(shè)解析式為

          ∴解析式為   

          ∴頂點坐標是(2,4)                              …………………6分

          當拋物線經(jīng)過P2(10,0),  O(0,0), A(2,4)時

          設(shè)所求拋物線為

          ∴ 

           ∴ 頂點坐標是(5,).                   …………………8分

          設(shè)經(jīng)過的解析式為

          則      ∴

          ∴拋物線的解析式是                   

          ∴頂點坐標是(3,)                       …………………10分

          23.解(1)在直角ABC中,

          ∵CO⊥AB   ∴OC2=OA.OB 

          ∴2=1×m  即m=4 

          ∴B(4,0).

           把A(-1,0) B(4,0)分別代入y=ax+bx-2并解方程組得a= 。猓剑 

           ∴ y=x2-x-2                       …………………4分

           (2)把D(1,n)代入y=x2-x-2得n=-3   

          ∴D(1,-3)

          解方程組

           

          得   

           ∴E(6,7).                             …………………8分

          (3)作EH⊥x軸于點H,則EH=AH=7,∴∠EAB=45°

           由勾股定理得:BE=  AE=7 

          作DM⊥x軸于點M,則DM=BM=3,∴∠DBM=45°由勾股定理得 BD=3.    

          假設(shè)在x軸上存在點P滿足條件,  ∵∠EAB=∠DBP=45°

                 ∴或 

          即 或

          ∴PB=或PB=    OP=4-=或OP=4-=-.

           ∴在x軸上存在點P1(,0) , P2(-,0) 滿足條件.…………………12分


          同步練習(xí)冊答案