②函數(shù)在區(qū)間(1.2)上存在零點的充要條件是, 查看更多

 

題目列表(包括答案和解析)

“函數(shù)f(x)=kx-2在區(qū)間[-1,1]上存在零點”是“k≥3”的(  )

查看答案和解析>>

函數(shù)f(x)=lnx-
1
x-1
在區(qū)間(k,k+1)(k∈N*)上存在零點,則k的值為( 。

查看答案和解析>>

函數(shù)f(x)=kx+2在區(qū)間[-2,2]上存在零點,則實數(shù)k的取值范圍
k≥1或k≤-1
k≥1或k≤-1

查看答案和解析>>

函數(shù)f(x)=lnx-
1
x-1
在區(qū)間(k,k+1)(k∈N*)上存在零點,則k的值為( 。
A.0B.2C.0或2D.1或2

查看答案和解析>>

函數(shù)f(x)=lnx-在區(qū)間(k,k+1)(k∈N*)上存在零點,則k的值為( )
A.0
B.2
C.0或2
D.1或2

查看答案和解析>>

一、選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)

1.B  2.A  3.B  4.B  5.C  6.B  7.D  8.C  9.D  10.A  11.C  12.A

二、填空題(本大題共4小題,每小題4分,共16分)

13.   14.18    15.、、   16.

三、解答題(本大題共6小題,共74分。解答應(yīng)寫出文字說明、證明過程或演算步驟。)

17.解:(Ⅰ)

=

函數(shù)的周期,

由題意可知,

解得,即的取值范圍是

(Ⅱ)由(Ⅰ)可知

由余弦定理知

 又,

18.(I)證明:連結(jié),連結(jié)

    底面是正方形,的中點,

    在中,是中位線,,

    而平面平面,所以,平面

(Ⅱ)證明:底面底面,

,可知是等腰直角三角形,而是斜邊的中線。

   ①

同樣由底面

底面是正方形,有平面。

平面

由①和②推得平面

平面

,所以平面

(Ⅲ)解:由(Ⅱ)知,,故是二面角的平面角

由(2)知,

設(shè)正方形的邊長為,則

   

中,

中,

所以,二面角的大小為

方法二;如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點,設(shè)

(I)證明:連結(jié)AC,AC交BD于G,連結(jié)EG。

依題意得A(,0,0),P(0,0, ),

底面是正方形,是此正方形的中心,故點的坐標(biāo)為

,這表明

平面平面平面

(Ⅱ)證明:依題意得

,故

由已知,且,所以平面

(Ⅲ)解:設(shè)點的坐標(biāo)為,則

從而所以

由條件知,,即

,解得

的坐標(biāo)為,且

    

,故二面角的平面角。

,且

所以,二面角的大小為(或用法向量求)

19.解:(I)設(shè)“從第一小組選出的2人均考《極坐標(biāo)系與參數(shù)方程》”為事件A,“從第二小組選出的2人均考《極坐標(biāo)系與參數(shù)方程》”為事件B,由于事件A、B相互獨立,

所以選出的4人均考《極坐標(biāo)系與參數(shù)方程》的概率為

(Ⅱ)設(shè)可能的取值為0,1,2,3,得

的分布列為

0

1

2

3

 

的數(shù)學(xué)期望

 

20.解:由題意

(I)當(dāng)時。

,解得,函數(shù)的單調(diào)增區(qū)間是;

,解得,函數(shù)的單調(diào)減區(qū)間是

當(dāng)時,函數(shù)有極小值為

(2) 當(dāng)時,由于,均有

恒成立,

,

由(I)知函數(shù)極小值即為最小值,

,解得

21.解(I)方程有且只有一個根,

又由題意知舍去

當(dāng)時,

當(dāng)時,也適合此等式

(Ⅱ)

由①-②得

(Ⅲ)法一:當(dāng)2時,

時,數(shù)列單調(diào)遞增,

又由(II)知

法二:當(dāng)時,

22.(I)⊙M過點三點,圓心既在的垂直平分線上,也在的垂直平分線上,的垂直平分線方程為

的中點為

的垂直平分線方程為

由④⑤得

在直線上。

橢圓的方程為

(Ⅱ)設(shè)

是定值;

 

 


同步練習(xí)冊答案