解法二:f(x6)=log2x.∴f(x)=log2log2x 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=log2x+3,x∈[1,+∞),則f-1(x)的定義域是________.

查看答案和解析>>

已知直三棱柱中, , , 的交點(diǎn), 若.

(1)求的長(zhǎng);  (2)求點(diǎn)到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點(diǎn)A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

若兩個(gè)函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個(gè)函數(shù)為“同形”函數(shù).給出四個(gè)函數(shù):f1(x)=2log2x,f2(x)=log2(x+2),f3(x)=(log2x)2,f4(x)=log2(2x).則“同形”函數(shù)是(  )

(A)f1(x)與f2(x)         (B)f2(x)與f3(x)

(C)f1(x)與f4(x)         (D)f2(x)與f4(x)

查看答案和解析>>

(2013•黑龍江二模)求“方程(
3
5
x+(
4
5
x=1的解”有如下解題思路:設(shè)f(x)=(
3
5
x+(
4
5
x,則f(x)在R上單調(diào)遞減,且f(2)=1,所以原方程有唯一解x=2.類比上述解題思路,方程x6+x2=(x+2)3+(x+2)的解集為
{-1,2}
{-1,2}

查看答案和解析>>

(2012•汕頭二模)設(shè)函數(shù)f(x)=sin(
πx
6
-
π
4
)+2
2
cos2
πx
12
-
2

(1)求f(x)的最小正周期.
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=1對(duì)稱,當(dāng)x∈[0,
11
2
]時(shí),求函數(shù)y=g(x)的最小值與相應(yīng)的自變量x的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案