解法一:由f(x)=(x≠0)求得其反函數(shù)為:f-1(x)=(x≠0).故答案為B. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

閱讀下面內(nèi)容,思考后做兩道小題。

在一節(jié)數(shù)學(xué)課上,老師給出一道題,讓同學(xué)們先解,題目是這樣的:

已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。

題目給出后,同學(xué)們馬上投入緊張的解答中,結(jié)果很快出來了,大家解出的結(jié)果有很多個(gè),下面是其中甲、乙兩個(gè)同學(xué)的解法:

甲同學(xué)的解法:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即0≤b≤2               ③

② ×(-1)+①得:-1≤k-b≤1             ④

④+②得:0≤2k≤4                                               ⑤

③+⑤得:0≤2k+b≤6。

又∵f(2)=2k+b

∴0≤f(2)≤6,0≤Z≤6

      乙同學(xué)的解法是:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即:0≤b≤2                        ③

①-②得:2≤2k≤2,即:1≤k≤1

∴k=1,

∵f(2)=2k+b=1+b

由③得:1≤f(2)≤3

∴:1≤Z≤3

(Ⅰ)如果課堂上老師讓你對(duì)甲、乙兩同學(xué)的解法給以評(píng)價(jià),你如何評(píng)價(jià)?

(Ⅱ)請(qǐng)你利用線性規(guī)劃方面的知識(shí),再寫出一種解法。

查看答案和解析>>

已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對(duì)數(shù)的底).
(Ⅰ)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說明理由.

查看答案和解析>>

一彈簧掛著小球作上下振動(dòng),經(jīng)研究表明,時(shí)間x(s)與小球相對(duì)于平衡位置的高度y(cm)=f(x)的函數(shù)關(guān)系式符合某一正弦曲線f(x)=Asin(ωx+φ) (其中。0,ω>0,|φ|≤π),且離平衡位置最高點(diǎn)為(2,
2
),由最高點(diǎn)到相鄰下一次圖象交x軸于點(diǎn)(6,0);  (1)求經(jīng)多少時(shí)間小球往復(fù)振動(dòng)一次?(2)確定g(x)表達(dá)式,使其圖象與f(x)關(guān)于直線x=1對(duì)稱.

查看答案和解析>>

已知函數(shù)f(x)=
(x2+ax+a)
ex
,(a為常數(shù),e為自然對(duì)數(shù)的底).
(1)令μ(x)=
1
ex
,a=0,求μ'(x)和f'(x);
(2)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
[理](3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說明理由.

查看答案和解析>>

(2013•東城區(qū)一模)已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對(duì)數(shù)的底).
(Ⅰ)當(dāng)a=0時(shí),求f′(2);
(Ⅱ)若f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x-2y+m=0( m為確定的常數(shù))相切,并說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案