8.在等差數(shù)列和等比數(shù)列中..則數(shù)列前5項(xiàng)的和為(A)5 (B)10 (C)20 (D)40 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列中,若已知兩項(xiàng)ap和aq,則等差數(shù)列的通項(xiàng)公式an=ap+(n-p)
ap-aq
p-q
.類似的,在等比數(shù)列中,若已知兩項(xiàng)ap和aq(假設(shè)p>q),則等比數(shù)列的通項(xiàng)公式an=
ap•[
p-q
ap
aq
]
n-p
ap•[
p-q
ap
aq
]
n-p

查看答案和解析>>

在等差數(shù)列是{an}中,已知a4與a2與a8的等比中項(xiàng),a3+2是a2與a6的等差中項(xiàng),Sn是前n項(xiàng)和,則滿足
9
11
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
19
21
(n∈N*)
的所有n值的和為
35
35

查看答案和解析>>

在等差數(shù)列中,.

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足),則是否存在這樣的實(shí)數(shù)使得為等比數(shù)列;

(3)數(shù)列滿足為數(shù)列的前n項(xiàng)和,求.

 

查看答案和解析>>

在等差數(shù)列中,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足),則是否存在這樣的實(shí)數(shù)使得為等比數(shù)列;
(3)數(shù)列滿足為數(shù)列的前n項(xiàng)和,求.

查看答案和解析>>

在等差數(shù)列是{an}中,已知a4與a2與a8的等比中項(xiàng),a3+2是a2與a6的等差中項(xiàng),Sn是前n項(xiàng)和,則滿足
9
11
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
19
21
(n∈N*)
的所有n值的和為______.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.A   3.B   4.D   5.C   6.C   7.B   8.B   9.B   10.D   11.C    12.D

 

二、填空題(每小題5分,共20分)

13.2     14.    15.    16.③④

 

三、解答題(共70分)

17. (本小題滿分10分)

解:(Ⅰ)由  可得:

     又     ;        ………………………… 5分

(Ⅱ),

    

.                               ………………………………………… 10分

 

 

18.(本小題滿分12分)

解:(Ⅰ)設(shè)A隊(duì)得分為2分的事件為,

  ………… 4分

(Ⅱ)的可能取值為3 , 2 , 1 , 0 ;   

,    ,    , ,  

0

1

2

3

的分布列為:                          

                       

                                                                                                            

………… 8分

      于是 , ……………… 9分

,    ∴     ……………………… 11分

由于, 故B隊(duì)比A隊(duì)實(shí)力較強(qiáng).    ……………………… 12分

 

19.(本小題滿分12分)

解法一

(Ⅰ)連結(jié),

     ∵平面,平面∩平面

又∵的中點(diǎn)

的中點(diǎn)

    ∵

,

是二面角的平面角.

,

    在直角三角形中,,   ………… 6分

(Ⅱ)解:過,垂足為,連結(jié),

是三角形的中位線,

,又

     ∴平面

在平面上的射影,

又∵,由三垂線定理逆定理,得

為二面角的平面角

,

在直角三角形中,,

   

    ∴二面角的大小為.      ……………… 12分

 

解法二:

(Ⅰ)建立如圖所示空間坐標(biāo)系,則,

,

平面的法向量為

,

平面 ,.

所以點(diǎn)是棱的中點(diǎn).

平面的法向量,,

(Ⅱ)設(shè)平面的法向量為,平面的法向量

,,

∵二面角為銳角

∴二面角的大小為

 

 

 

20.(本小題滿分12分)

解:(Ⅰ)的定義域?yàn)?sub>.

,令得:

所以內(nèi)為增函數(shù),在內(nèi)為減函數(shù).     ……………… 6分

  (Ⅱ)由題意得:,

為遞增函數(shù),;

為遞增函數(shù),

的取值范圍為.                                  ……………… 12分

 

21. (本小題滿分12分)

解:(Ⅰ)過點(diǎn)垂直直線于點(diǎn)

依題意得:,

所以動點(diǎn)的軌跡為是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,

即曲線的方程是                                ………………………4分

(Ⅱ)設(shè) ,  ,則

知,, ∴,

又∵切線AQ的方程為:,注意到

切線AQ的方程可化為:;

在切線AQ上, ∴    

于是在直線

同理,由切線BQ的方程可得:   

于是在直線

所以,直線AB的方程為:,

又把代入上式得:

∴直線AB的方程為:

∴直線AB必過定點(diǎn).              ………………………12分

(Ⅱ)解法二:設(shè),切點(diǎn)的坐標(biāo)為,則

知,,得切線方程:

即為:,又∵在切線上,

所以可得:,又把代入上式得:

,解之得:

,

故直線AB的方程為:

化簡得:

∴直線AB的方程為:

∴直線AB必過定點(diǎn).

 

22.(本小題滿分12分)

解:(Ⅰ)由

        得:

①-②得,

即有,

數(shù)列是從第二項(xiàng)為,公比為的等比數(shù)列

  即, ……………………5分

滿足該式, .  ……………………6分

(Ⅱ)  ,   要使恒成立

恒成立

當(dāng)為奇數(shù)時,恒成立,而的最小值為   

                             ………………………………………………10分

當(dāng)為偶數(shù)時,恒成立,而的最大值為 

所以,存在,使得對任意都有.  ……………………………………12分

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案