題目列表(包括答案和解析)
1 |
x+a |
1 |
x+a |
1 |
x+a |
已知函數(shù)f(x)=,為常數(shù)。
(I)當(dāng)=1時(shí),求f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求的取值范圍。
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn)中,利用當(dāng)a=1時(shí),f(x)=,則f(x)的定義域是然后求導(dǎo),,得到由,得0<x<1;由,得x>1;得到單調(diào)區(qū)間。第二問(wèn)函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則或在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。
(1)當(dāng)a=1時(shí),f(x)=,則f(x)的定義域是
。
由,得0<x<1;由,得x>1;
∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分
(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),
則或在區(qū)間[1,2]上恒成立。∴,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。
又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3
即,或。 ∴,或。
求圓心在直線y=-2x上,并且經(jīng)過(guò)點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,
(1)若方程有兩個(gè)相等的根,求的解析式;
(2)若的最大值為正數(shù),求的取值范圍.
【解析】第一問(wèn)中利用∵f(x)+2x>0的解集為(1,3),
設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問(wèn)中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個(gè)相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com