突出重點(diǎn).綜合考查.在知識(shí)與方法的交匯點(diǎn)處設(shè)計(jì)命題.在不等式問(wèn)題中蘊(yùn)含著豐富的函數(shù)思想.不等式又為研究函數(shù)提供了重要的工具.不等式與函數(shù)既是知識(shí)的結(jié)合點(diǎn).又是數(shù)學(xué)知識(shí)與數(shù)學(xué)方法的交匯點(diǎn).因而在歷年高考題中始終是重中之重.在全面考查函數(shù)與不等式基礎(chǔ)知識(shí)的同時(shí).將不等式的重點(diǎn)知識(shí)以及其他知識(shí)有機(jī)結(jié)合.進(jìn)行綜合考查.強(qiáng)調(diào)知識(shí)的綜合和知識(shí)的內(nèi)在聯(lián)系.加大數(shù)學(xué)思想方法的考查力度.是高考對(duì)不等式考查的又一新特點(diǎn). 查看更多

 

題目列表(包括答案和解析)

如圖所示,在“推理與證明”的知識(shí)結(jié)構(gòu)圖中,如果要加入“綜合法”,則應(yīng)該放在( 。

查看答案和解析>>

(2012•湖北模擬)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為正常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

(2013•眉山二模)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(Ⅰ)求此平行線的距離;
(Ⅱ)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求此平行線的距離;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(1)利用向量有關(guān)知識(shí)與方法證明兩角差的余弦公式:Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;
(2)由Cα-β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>


同步練習(xí)冊(cè)答案