解析:將兩圓方程分別配方得(x-1)2+y2=1和x2+(y-2)2=4.兩圓圓心分別為O1(1.0).O2(0.2).r1=1.r2=2.|O1O2|=.又1=r2-r1<<r1+r2=3.故兩圓相交.所以應(yīng)選C.評述:本題考查了圓的一般方程.標(biāo)準(zhǔn)方程及圓的關(guān)系以及配方法. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點P(a,b)引兩圓切線PA、PB,切點分別為A、B,如圖,滿足|PA|=|PB|;
(Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點P落在根軸上;
(Ⅱ)求切線長|PA|的最小值;
(Ⅲ)給出定點M(0,2),設(shè)P、Q分別為直線l和圓O上動點,求|MP|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數(shù))和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點P(a,b)引兩圓切線PA、PB,切點分別為A、B,如圖,滿足|PA|=|PB|;
(Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點P落在根軸上;
(Ⅱ)求切線長|PA|的最小值;
(Ⅲ)給出定點M(0,2),設(shè)P、Q分別為直線l和圓O上動點,求|MP|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣對應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1(θ為參數(shù))和曲線C2:ρsin(θ-)=
(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<,|y-b|<,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

       已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點P(a,b)引兩圓切線PA、PB,切點分別為A、B,如圖,滿足|PA|=|PB|;

       (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點P落在根軸上;

       (Ⅱ)求切線長|PA|的最小值;

(Ⅲ)給出定點M(0,2),設(shè)P、Q分別為直線l和圓O上動點,求|MP|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊答案