查看更多

 

題目列表(包括答案和解析)

(本小題滿分6分,請在下列兩個小題中,任選其一完成即可)
(1)解方程:x2+3x-2=0;
(2)如圖,在邊長為1個單位長度的正方形方格紙中建立直角坐標系,△ABC各頂點的坐標為:A(-5,4)、B(-1,1)、C(-5,1).
①將△ABC繞著原點O順時針旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′;
②寫出A′點的坐標.

查看答案和解析>>

25.(本小題滿分14分)

如圖13,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C(0,-1),ΔABC的面積為。

(1)求該二次函數(shù)的關(guān)系式;

(2)過y軸上的一點M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點,求m的取值范圍;

(3)在該二次函數(shù)的圖象上是否存在點D,使四邊形ABCD為直角梯形?若存在,求出點D的坐標;若不存在,請說明理由。

查看答案和解析>>

(本小題滿分5分)計算 : 

 

查看答案和解析>>

(本小題滿分12分)如圖,在平面直角坐標系中,直線軸交于點,與軸交于點,拋物線過點、點,且與軸的另一交點為,其中>0,又點是拋物線的對稱軸上一動點.

(1)求點的坐標,并在圖1中的上找一點,使到點與點的距離之和最;

(2)若△周長的最小值為,求拋物線的解析式及頂點的坐標;

(3)如圖2,在線段上有一動點以每秒2個單位的速度從點向點移動(不與端點、重合),過點軸于點,設(shè)移動的時間為秒,試把△的面積表示成時間的函數(shù),當(dāng)為何值時,有最大值,并求出最大值.

 

查看答案和解析>>

(本小題滿分12分)

某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y =x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設(shè)月利潤為w內(nèi)(元)(利潤 = 銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2 元的附加費,設(shè)月利潤為w(元)(利潤 = 銷售額-成本-附加費).

1.(1)當(dāng)= 1000時,=        元/件,w內(nèi) =         元;

2.(2)分別求出w內(nèi)wx間的函數(shù)關(guān)系式(不必寫x的取值范圍);

3.(3)當(dāng)x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值;

4.(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內(nèi)還是在國外銷售才能使所獲月利潤較大?

參考公式:拋物線的頂點坐標是

 

查看答案和解析>>

一 選擇題(共20分,每小題2分)

1. B  2 . B  3. C 4 .A  5 C  6 . C   7. C   8. A   9 . B   10.  D

.

二,填空題。(共24分,每小題3分)

11 .  12 .    13 .     14 .   15.    16 .  17 .  18 ..

三、

19解:

 

 

 

 

當(dāng)時,原式=

20(1)如圖

 

 

 

 

 

 

 

 

(2)優(yōu)等人數(shù)為 

     良等人數(shù)為 

(3)優(yōu)、良等級的概率分別是   

(4)該校數(shù)學(xué)成績優(yōu)等、良等人數(shù)共占40%、等人數(shù)僅占10%,說明該校期末考試成績比較好.(只要合理,均給分)

21.解: (1)∵在Rt△AOB中,∠AOB=900,∠ABO=600,OB=1

        ∴AB=2,OA=

              ∴點A坐標

 

∵二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點A、點B和點C

  解得

∴該二次函數(shù)的表達式

(2)對稱軸為;頂點坐標為

(3)∵對稱軸為,A

∴點D坐標

∴四邊形ABCD為等腰梯形

22.解:過點D作DE⊥BC交BC延長線于點E,過點E作EF∥AD交AB于點F

在Rt△CDE中,∠CED=90°,∠DCE=30°,CD=10

∴DE=5,  CE=

∴BE=

∵太陽光線AD與水平地面成30°角

∴∠FEB=30°

在Rt△BFE中,∠B=90°,∠FEB=30°,BE=

∴BF=BE?tan∠FEB==

∵AF=DE=5

∴AB=AF+BF===19.1≈19

答旗桿AB的高度為19米.

 

23解:⑴

⑵如圖所示

 

 

 

⑶如圖所示

 

 

 

 

24.解:(1)如圖1,AE=AF. 理由:證明△ABE≌△ADF(ASA)

(2)如圖2, PE=PF.

理由:過點P作PM⊥BC于M,PN⊥DC于N,則PM=PN.由此可證得△PME≌△PNF(ASA),從而證得PE=PF.

      (3) PE、PF不具有(2)中的數(shù)量關(guān)系.

當(dāng)點P在AC的中點時,PE、PF才具有(2)中的數(shù)量關(guān)系.

25.解:(1)由已知條件,得

  (2)由已知條件,得

      

      解得   

    

 

∴應(yīng)從A村運到甲庫50噸,運到乙?guī)?50噸;從B村運到甲庫190噸,運到乙?guī)?10噸,這樣調(diào)運就能使總運費最少.

(3)這個同學(xué)說的對.

理由:設(shè)A村的運費為元,則

∴當(dāng)x=200時,A村的運費最少,

而y=-2x+9680(0≤x≤200)

∵K=-2<0

∴X=200時,y有最小值,兩村的總運費也是最少。

即當(dāng)x=200時,A村和兩村的總運費都最少。

26.解:(1)如圖,作DE⊥AB于E,CF⊥AB于F,

依題意可知,四邊形CDEF是矩形,AE=BF,

在Rt△ADE中,

∴梯形ABCD的周長為, 面積為.

(2)∵PQ平分梯形ABCD的周長,

解得

∴當(dāng)PQ平分梯形ABCD的周長時,

(3)∵PQ平分梯形ABCD的面積

∴①當(dāng)點P在AD邊上時,

解得

②當(dāng)點P在DC邊上時,

解得

③當(dāng)點P在CB邊上時,

∵△<0,∴此方程無解.

∴當(dāng)PQ平分梯形ABCD的面積時,

(4).

 

 


同步練習(xí)冊答案