(1)閱讀證明
①如圖1,在△ABC所在平面上存在一點P,使它到三角形三頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離.
②如圖2,已知點P為等邊△ABC外接圓的
上任意一點.求證:PB+PC=PA.
(2)知識遷移
根據(jù)(1)的結(jié)論,我們有如下探尋△ABC(其中∠A,∠B,∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖3,在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
上取一點P
0,連接P
0A,P
0B,P
0C,P
0D.易知P
0A+P
0B+P
0C=P
0A+(P
0B+P
0C)=P
0A+
P0D
P0D
;
第三步:根據(jù)(1)①中定義,在圖3中找出△ABC的費馬點P,線段
AD
AD
的長度即為△ABC的費馬距離.
(3)知識應(yīng)用
已知三村莊A,B,C構(gòu)成了如圖4所示的△ABC(其中∠A,∠B,∠C均小于120°),現(xiàn)選取一點P打水井,使水井P到三村莊A,B,C所鋪設(shè)的輸水管總長度最小.求輸水管總長度的最小值.