中可知: 恒有 查看更多

 

題目列表(包括答案和解析)

(本題16分)已知函數(shù),其中e是自然數(shù)的底數(shù),

(1)當(dāng)時(shí),解不等式

(2)若當(dāng)時(shí),不等式恒成立,求a的取值范圍;

(3)當(dāng)時(shí),試判斷:是否存在整數(shù)k,使得方程

   上有解?若存在,請(qǐng)寫出所有可能的k的值;若不存在,說(shuō)明理由。

 

查看答案和解析>>

(本題16分)已知函數(shù),其中e是自然數(shù)的底數(shù),,
(1)當(dāng)時(shí),解不等式;
(2)若當(dāng)時(shí),不等式恒成立,求a的取值范圍;
(3)當(dāng)時(shí),試判斷:是否存在整數(shù)k,使得方程
上有解?若存在,請(qǐng)寫出所有可能的k的值;若不存在,說(shuō)明理由。

查看答案和解析>>

已知函數(shù)為實(shí)數(shù)).

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

【解析】第一問(wèn)中由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

第二問(wèn).

當(dāng)時(shí),,在上有遞增,符合題意;  

,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

(Ⅱ) .

當(dāng)時(shí),,在上有遞增,符合題意;  

,則,∴上恒成立.∵二次函數(shù)的對(duì)稱軸為,且

  .   綜上

 

查看答案和解析>>

已知函數(shù)

(1)試求的值域;

(2)設(shè),若對(duì), ,恒 成立,試求實(shí)數(shù)的取值范圍

【解析】第一問(wèn)利用

第二問(wèn)中若,則,即當(dāng)時(shí),,又由(Ⅰ)知

若對(duì),,恒有成立,即轉(zhuǎn)化得到。

解:(1)函數(shù)可化為,  ……5分

 (2) 若,則,即當(dāng)時(shí),,又由(Ⅰ)知.        …………8分

若對(duì),,恒有成立,即,

,即的取值范圍是

 

查看答案和解析>>

下列說(shuō)法中

①  若定義在R上的函數(shù)滿足,則6為函數(shù)的周期;

② 若對(duì)于任意,不等式恒成立,則;

③ 定義:“若函數(shù)對(duì)于任意R,都存在正常數(shù),使恒成立,則稱函數(shù)為有界泛函.”由該定義可知,函數(shù)為有界泛函;

④對(duì)于函數(shù) 設(shè),,…,),令集合,則集合為空集.正確的個(gè)數(shù)為

A.1個(gè)             B.2個(gè)              C.3個(gè)              D.4個(gè)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案